Particulate matter (PM) exposure is linked to the worsening of respiratory conditions, including allergic rhinitis (AR), as it can trigger nasal and systemic inflammation. To unveil the underlying molecular mechanisms, we investigated the effects of PM exposure on the release of plasmatic extracellular vesicles (EV) and on the complex cross-talk between the host and the nasal microbiome. To this aim, we evaluated the effects of PM and PM exposures on both the bacteria-derived-EV portion (bEV) and the host-derived EVs (hEV), as well as on bacterial nasal microbiome (bNM) features in 26 AR patients and 24 matched healthy subjects (HS).
View Article and Find Full Text PDFThe current study aimed to compare 2 topical diclofenac products (diclofenac diethylamine [DEA] 1.16% emulsion and diclofenac sodium [Na] 5% gel). The quantitative evaluation of skin permeability and the qualitative evaluation of their physical characteristics were performed.
View Article and Find Full Text PDFOsteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3).
View Article and Find Full Text PDFMacrophage polarization into a phenotype producing high levels of anti-inflammatory IL-10 and low levels of proinflammatory IL-12 and TNF-α cytokines plays a pivotal role in the resolution of inflammation. Salt-inducible kinases synergize with TLR signaling to restrict the formation of these macrophages. The expression and function of salt-inducible kinase in primary human myeloid cells are poorly characterized.
View Article and Find Full Text PDFSLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T-B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human.
View Article and Find Full Text PDFUse of RNA interference to reduce huntingtin protein (htt) expression in affected brain regions may provide an effective treatment for Huntington disease (HD), but it remains uncertain whether suppression of both wild-type and mutant alleles in a heterozygous patient will provide more benefit than harm. Previous research has shown suppression of just the mutant allele is achievable using siRNA targeted to regions of HD mRNA containing single nucleotide polymorphisms (SNPs). To determine whether more than a minority of patients may be eligible for an allele-specific therapy, we genotyped DNA from 327 unrelated European Caucasian HD patients at 26 SNP sites in the HD gene.
View Article and Find Full Text PDFG protein-coupled receptor kinase 2 (GRK2) modulates G protein-coupled receptor desensitization and signaling. We previously described down-regulation of GRK2 expression in vivo in rat neonatal brain following hypoxia-ischemia. In this study, we investigated the molecular mechanisms involved in GRK2 down-regulation, using organotypic cultures of neonatal rat hippocampal slices exposed to oxygen and glucose deprivation (OGD).
View Article and Find Full Text PDFG protein-coupled receptor kinase 2 (GRK2) is involved in the agonist-induced desensitization of beta2-adrenoceptors. In addition, GRK2 is capable of binding and phosphorylating tubulin. Interestingly, microtubule dynamics profoundly affect agonist-induced internalization of beta2-adrenoceptors.
View Article and Find Full Text PDFPerinatal hypoxia ischemia (HI) is a frequent cause of neonatal brain injury. This study aimed at describing molecular changes during the first 48 h after exposure of the neonatal rat brain to HI. Twelve-day-old rats were subjected to unilateral carotid artery occlusion and 90 min of 8% O2, leading to neuronal damage in the ipsilateral hemisphere only.
View Article and Find Full Text PDFActivated nuclear factor-kappaB (NFkappaB) has been shown to increase transcription of several genes that could potentially contribute to neuronal damage, such as proinflammatory cytokines, chemokines, and inducible nitric oxide synthase. The aim of our study was to investigate whether inhibition of NFkappaB activation could prevent hypoxia/ischemia (HI)-induced cerebral damage in neonatal rats. We used a cell permeable peptide (NEMO binding domain [NBD] peptide) that is known to prevent the association of the regulatory protein NEMO with IKK, the kinase that activates NFkappaB.
View Article and Find Full Text PDFMany modulators of inflammation, including chemokines, neuropeptides, and neurotransmitters signal via G protein-coupled receptors (GPCR). GPCR kinases (GRK) can phosphorylate agonist-activated GPCR thereby promoting receptor desensitization. Here we describe that in leukocytes from patients with active relapsing-remitting multiple sclerosis (MS) or with secondary progressive MS, GRK2 levels are significantly reduced.
View Article and Find Full Text PDFBackground And Purpose: Neurotransmitters, neuropeptides, chemokines, and many other molecules signal through G protein-coupled receptors (GPCRs). GPCR kinases (GRKs) and beta-arrestins play a crucial role in regulating the responsiveness of multiple GPCRs. Reduced expression of GRK and beta-arrestins leads to supersensitization of GPCRs and will thereby increase the response to neuropeptides and neurotransmitters.
View Article and Find Full Text PDFChemokine receptors belong to the family of G-protein-coupled receptors (GPCR). Phosphorylation of GPCR by GPCR kinases (GRKs) is considered to play an important role in desensitization of these receptors. We have recently shown in patients with rheumatoid arthritis that the level of GRK2 in lymphocytes is reduced by approximately 50%.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCR) play an important role in inflammation. Their responsiveness is regulated by G-protein-coupled receptor kinases (GRKs) and beta-arrestins. We show here that induction of experimental autoimmune encephalomyelitis (EAE) by myelin oligodendrocyte glycoprotein (MOG) resulted in a profound decrease in GRK2 and GRK6 protein in splenocytes during all phases of disease.
View Article and Find Full Text PDFMany extracellular stimuli, such as neurotransmitters, hormones, chemokines, proteinases, inflammatory mediators, odorants, and light, are recognized by the superfamily of G protein-coupled receptors (GPCRs). Immune cells express GPCRs for classical chemoattractants, chemokines, neuropeptides, and neurotransmitters. GPCRs transmit information by interacting with heterotrimeric G proteins, resulting in rapid and transient signaling.
View Article and Find Full Text PDFG protein-coupled receptor kinase (GRK) 2 plays a crucial role in regulating the extent of desensitization and resensitization of G protein-coupled receptors (GPCRs). We have shown that the expression level of GRK2 in lymphocytes decreases during inflammatory diseases such as arthritis. Reactive oxygen species play an important role in a variety of inflammatory conditions, including arthritis.
View Article and Find Full Text PDF