Topoisomerase IIα (topo2α) is an essential nuclear enzyme involved in DNA replication, transcription, recombination, chromosome condensation, and highly expressed in many tumors. Thus, topo2α-targeting has become a very efficient and well-established anticancer strategy. Herein, we investigate the cytotoxic and DNA-damaging activity of thiomaltol-containing ruthenium-, osmium-, rhodium- and iridium-based organometallic complexes in human mammary carcinoma cell lines by means of several biological assays, including knockdown of topo2α expression levels by RNA interference.
View Article and Find Full Text PDFPlatinum-based anticancer coordination compounds are widely used in the treatment of many tumor types, where they are very effective but also cause severe side effects. Organoplatinum compounds are significantly less investigated than the analogous coordination compounds. We report here rollover cyclometalated Pt compounds based on 2,2'-bipyridine which are demonstrated to be potent antitumor agents both in vitro and in vivo.
View Article and Find Full Text PDFWithin this work we aimed to improve the pharmacodynamics and toxicity profile of organoruthenium and -rhodium complexes which had previously been found to be highly potent in vitro but showed unselective activity in vivo. Different organometallic complexes were attached to a degradable poly(organo)phosphazene macromolecule, prepared via controlled polymerization techniques. The conjugation to hydrophilic polymers was designed to increase the aqueous solubility of the typically poorly soluble metal-based half-sandwich compounds with the aim of a controlled, pH-triggered release of the active metallodrug.
View Article and Find Full Text PDFThiomaltol, a potential S,O-coordinating molecule, has been utilized for the complexation of four different organometallic fragments, yielding the desired Ru , Os , Rh , and Ir complexes having a "piano-stool" configuration. In addition to the synthesis of these compounds with a chlorido leaving group, the analogous 1-methylimidazole derivatives have been prepared, giving rise to thiomaltol-based organometallics with enhanced stability under physiological conditions. The organometallic compounds have been characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction analysis.
View Article and Find Full Text PDF