Publications by authors named "Maria S Espejo"

The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation-contraction coupling (ECC) and the possibility that such effect participates in cardioprotection.

View Article and Find Full Text PDF

Background: Carbonic anhydrases catalyze CO/HCO buffer reactions with implications for effective H mobility, pH dynamics, and cellular acid-base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear.

Methods: We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas.

View Article and Find Full Text PDF

Background: While cellular metabolism and acidic waste handling accelerate during breast carcinogenesis, temporal patterns of acid-base regulation and underlying molecular mechanisms responding to the tumour microenvironment remain unclear.

Methods: We explore data from human cohorts and experimentally investigate transgenic mice to evaluate the putative extracellular HCO-sensor Receptor Protein Tyrosine Phosphatase (RPTP)γ during breast carcinogenesis.

Results: RPTPγ expression declines during human breast carcinogenesis and particularly in high-malignancy grade breast cancer.

View Article and Find Full Text PDF

The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na/HCO cotransporter (NBC) promotes the cellular co-influx of HCO and Na.

View Article and Find Full Text PDF

Background It is well known that after menopause women are exposed to a greater cardiovascular risk, but the intracellular modifications are not properly described. The sodium/proton exchanger (NHE) and the sodium/bicarbonate cotransporter (NBC) regulate the intracellular pH and, indirectly, the intracellular sodium concentration ([Na]). There are 2 isoforms of NBC in the heart: the electrogenic (1Na/2[Formula: see text]; NBCe1) and the electroneutral (1Na/1[Formula: see text]; NBCn1).

View Article and Find Full Text PDF

The force-frequency relationship (FFR) is an important intrinsic regulatory mechanism of cardiac contractility. However, a decrease (negative FFR) or no effect (flat FFR) on contractile force in response to an elevation of heart rate is present in the normal rat or in human heart failure. Reactive oxygen species (ROS) can act as intracellular signaling molecules activating diverse kinases as calcium-calmodulin-dependent protein kinase II (CaMKII) and p-38 MAP kinase (p-38K).

View Article and Find Full Text PDF

The sodium/bicarbonate cotransporter (NBC) transports extracellular Na and HCO into the cytoplasm upon intracellular acidosis, restoring the acidic pH to near neutral values. Two different NBC isoforms have been described in the heart, the electroneutral NBCn1 (1Na:1HCO) and the electrogenic NBCe1 (1Na:2HCO). Certain non-genomic effects of aldosterone (Ald) were due to an orphan G protein-couple receptor 30 (GPR30).

View Article and Find Full Text PDF

Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect.

View Article and Find Full Text PDF