The correct characterisation of the articular disc of the temporomandibular joint (TMJ) is key to study the masticatory biomechanics. For the interval from extraction until testing, freezing is the most used preservation technique for biological tissues, but its influence on their behaviour is still unclear. An important error can be committed in the characterisation of such tissues if freezing has any effect on their mechanical properties.
View Article and Find Full Text PDFThe aim of this paper is to propose a biomechanical model that could serve as a tool to overcome some difficulties encountered in experimental studies of the mandible. One of these difficulties is the inaccessibility of the temporomandibular joint (TMJ) and the lateral pterygoid muscle. The focus of this model is to study the stresses in the joint and the influence of the lateral pterygoid muscle on the mandible movement.
View Article and Find Full Text PDFA finite element model of the temporomandibular joint (TMJ) and the human mandible was fabricated to study the effect of abnormal loading, such as awake and asleep bruxism, on the articular disc. A quasilinear viscoelastic model was used to simulate the behaviour of the disc. The viscoelastic nature of this tissue is shown to be an important factor when sustained (awake bruxism) or cyclic loading (sleep bruxism) is simulated.
View Article and Find Full Text PDFA precise information of the biomechanical properties of soft tissues is required to develop a suitable simulation model, with which the distribution of stress and strain in the complex structures can be estimated. Many soft tissues have been mechanically characterized by stress relaxation tests under unconfined or confined compression. In general, full-thickness samples are extracted to reduce the damage in the tissue as much as possible.
View Article and Find Full Text PDFThe main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective.
View Article and Find Full Text PDF