Fish Shellfish Immunol
November 2020
Gilthead seabream (Sparus aurata) is among the most important cultured fish species in the Mediterranean area and pathogen diseases one of the bottlenecks to the aquaculture sector. For this reason, generation of laboratory tools for diagnostic and research applications would be beneficial to improve the seabream aquaculture. In this sense, we aimed to generate a seabream cell line for biological studies.
View Article and Find Full Text PDFGestational diabetes mellitus (GDM) is a world-wide health challenge, which prevalence is expected to increase in parallel to the epidemic of obesity. Children born from GDM mothers have lower levels of docosahexaenoic acid (DHA) in cord blood, which might influence their neurodevelopment. Recently, the membrane transporter Major Family Super Domain 2a (MFSD2a) was associated with the selective transportation of DHA as lysophospholipids.
View Article and Find Full Text PDFThe marine fish mummichog (Fundulus heteroclitus), extensively used as research model, including in ecotoxicology, for over a century has been surpassed by other fish species. This fact may be associated with the lack of cell lines from this species, excellent models for the comprehension of fish physiology, immunology, toxicology and virology, that contribute to the reduction in the number of animals used in research. We have generated, for the first time, a brain-derived cell line from mummichog, FuB-1, and evaluated its application to the fields of fish virology, immunity and toxicology.
View Article and Find Full Text PDFIntroduction: Recent studies indicate that alkaline phosphatase (ALP) may affect expression and activity of fatty acid (FA) transport proteins in placenta and other tissues.
Objective: To evaluate if disturbed FA profile in offspring of gestational diabetes mellitus (GDM) with different maternal pregestational weight could be related to maternal or neonatal ALP.
Methods: Prospective observational study of pregnant women recruited in the third trimester (25 controls, 23 lean-GDM, 20 obese-GDM).
Objective: The aim of this study was to analyse the differences in the phospholipid composition of very low density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese women.
Methods: LDL, HDL, and VLDL were isolated from plasma samples of 10 lean and 10 obese pregnant women, and their species composition of phosphatidylcholines (PC) and sphingomyelins (SM) was analysed by liquid-chromatography tandem mass-spectrometry. Wilcoxon-Mann-Whitney U test and principal component analysis (PCA) were used to investigate if metabolite profiles differed between the lean/obese group and between lipoprotein species.
Biochim Biophys Acta Mol Cell Biol Lipids
September 2018
Maternal obesity is associated with adverse outcomes. Placental lipid droplets (LD) have been implicated in maternal-fetal lipid transfer but it is not known whether placental LD fat composition is modifiable. We evaluated the effects of a diet and physical activity intervention in obese pregnant women compared to routine antenatal care (UPBEAT study) on placental LD composition.
View Article and Find Full Text PDFThe great variety of n-3 long-chain PUFA sources raises the question of the most adequate for using as a DHA supplement during pregnancy. Placental and fetal availability of different DHA sources remains unclear. We investigated DHA availability in maternal lipoproteins, placenta and fetal tissues in pregnant sows fed DHA as phospholipid (PL) or TAG to identify the best DHA source during this period.
View Article and Find Full Text PDFThere is little information available on the effect of Gestational diabetes mellitus (GDM) treatment (diet or insulin) on placental lipid carriers, which may influence fetal fat accretion. Insulin may activate placental insulin receptors protein kinase (AKT) and extracellular signal regulated kinase ERK mediators, which might affect lipid metabolism. Placenta was collected from 25 control women, 23 GDM-Diet and 20 GDM-Insulin.
View Article and Find Full Text PDFBackground: Gestational diabetes mellitus (GDM) is associated with increased fetal adiposity, which may increase the risk of obesity in adulthood. The placenta has insulin receptors and maternal insulin can activate its signaling pathways, affecting the transport of nutrients to the fetus. However, the effects of diet or insulin treatment on the placental pathophysiology of GDM are unknown.
View Article and Find Full Text PDFBackground & Aims: Maternal-fetal transfer of docosahexaenoic acid (DHA) is impaired by gestational diabetes mellitus (GDM), but the underlying mechanisms are still unknown. MFSD2a was recently recognized as a lyso-phospholipid (lyso-PL) transporter that facilitates DHA accretion in brain. The role of this transporter in placenta is uncertain.
View Article and Find Full Text PDFThe functionality of the placenta may affect neonatal adiposity and fetal levels of key nutrients such as long-chain polyunsaturated fatty acids. Fetal macrosomia and its complications may occur even in adequately controlled gestational diabetic (GDM) mothers, suggesting that maternal glycemia is not the only determinant of fetal glycemic status and wellbeing. We studied in vivo the placental transfer of fatty acids (FA) labeled with stable isotopes administered to 11 control and 9 GDM pregnant women (6 treated with insulin).
View Article and Find Full Text PDFWe describe a method to isolate lipids droplets from human placental tissue for future lipid analyses. We collected placentas at term from healthy women (n=5) and tested three methods published for lipids droplets isolation in other tissues. Only one of the methods, when modified, isolated lipids droplets from placental tissue, whereas all three methods allowed lipids droplets isolation from rat liver (control tissue) and separation of lipids droplets from blood contamination of the tissue.
View Article and Find Full Text PDFPurpose Of Review: Placental nutrient uptake and transfer may have a unique role, as changes in trophoblast nutrient-sensing signaling pathways regulate cell metabolism and may affect the fetal growth and health programming in the offspring.
Recent Findings: The functionality of the placenta could affect the neonatal adiposity and the fetal levels of key nutrients such as long-chain polyunsaturated fatty acids. Insulin, oxygen and amino acid concentrations may regulate the mammalian target of rapamycin (mTOR) nutrient sensor in the human placenta affecting trophoblast metabolism and nutrient delivery.