Previous Fanconi anemia (FA) gene therapy studies have failed to demonstrate engraftment of gene-corrected hematopoietic stem and progenitor cells (HSPCs) from FA patients, either after autologous transplantation or infusion into immunodeficient mice. In this study, we demonstrate that a validated short transduction protocol of G-CSF plus plerixafor-mobilized CD34 cells from FA-A patients with a therapeutic lentiviral vector corrects the phenotype of in vitro cultured hematopoietic progenitor cells. Transplantation of transduced FA CD34 cells into immunodeficient mice resulted in reproducible engraftment of myeloid, lymphoid, and CD34 cells.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells.
View Article and Find Full Text PDF