Publications by authors named "Maria Rosaria di Nunzio"

Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.

View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) have attracted renewed attention as another type of promising candidates for functional porous materials. In most cases of HOF preparation, the applied molecular design principle is based on molecules with rigid π-conjugated skeleton together with more than three H-bonding groups to achieve 2D- or 3D-networked structures. However, the design principle does not always work, but results in formation of unexpected structures, where subtle structural factors of which we are not aware dictate the entire structure of HOFs.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that the UV-visible absorption spectra show various forms of DCM molecules, while the emission spectra shift with increased DCM concentration, indicating the formation of aggregates.
  • * Notably, the DCM/Al-ITQ-HB composites can sense vapors of certain aromatic amine compounds through a unique electron transfer process, offering potential applications in detecting aniline derivatives.
View Article and Find Full Text PDF

Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study of a push⁻pull molecule, -4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), entrapped within faujasite-type zeolites (HY, NaX, and NaY) and MCM-41 in dichloromethane suspensions.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the behavior of the irinotecan (IRT) anti-cancer drug in water at various pH levels, revealing that IRT exists in mono-cationic, di-cationic, and neutral forms depending on the acidity.
  • At low pH (1.11-3.01), both mono-cationic and di-cationic forms are favored, while the neutral form predominates at higher pH (greater than 9.46). The transition between these forms is influenced by proton concentrations, especially in acidic conditions.
  • The research highlights how protons affect the excited-state proton-transfer process of IRT, suggesting that the pH of the solution can significantly impact the drug's structural
View Article and Find Full Text PDF

We report on time-resolved fluorescence anisotropy studies of poly(9-vinylcarbazole) (PVK) nanoparticles (NPs) encapsulating Coumarin 153 (C153) and Nile Red (NR). The wobbling-in-a-cone model successfully describes the restricted movements of the encapsulated molecules. For C153-doped PVK NPs, when increasing the C153 content, the diffusional relaxation (τD) times become shorter (τD = 4.

View Article and Find Full Text PDF

An essential challenge in the development of nanosized metal organic framework (nanoMOF) materials in biomedicine is to develop a strategy to stabilize their supramolecular structure in biological media while being able to control drug encapsulation and release. We have developed a method to efficiently encapsulate topotecan (TPT, 1), an important cytotoxic drug, in biodegradable nanoMOFs. Once inside the pores, 1 monomers aggregate in a "ship in a bottle" fashion, thus filling practically all of the nanoMOFs' available free volume and stabilizing their crystalline supramolecular structures.

View Article and Find Full Text PDF

In this work, we report on photophysical studies of the anticancer drug topotecan (TPT) in aqueous solutions at different pHs. We used steady-state (UV-visible absorption and emission) and time-resolved picosecond (ps) emission spectroscopies to investigate the role of the H-bonding interactions as well as the proton concentration (pH = 0.48-7.

View Article and Find Full Text PDF

We report on the role of H-bonding interactions on the UV-visible absorption and emission (steady-state and time-resolved) spectroscopy of topotecan (TPT) in solution. In aprotic solvents, a very fast (less than 10 ps) excited-state intramolecular proton-transfer reaction occurs in the absorbing enol (E) form to give a zwitterion (Z) form, emitting with a large Stokes shift. In protic solvents like methanol, the time constant of Z* formation is longer (32 ps) due to the participation of solvent molecules in the proton-transfer reaction.

View Article and Find Full Text PDF

Steady-state and time-resolved picosecond emission studies were carried out to study the role of the proton concentration in the acid-base properties of the anticancer drug camptothecin (CPT) in its ground and electronically first excited states. The results show that, under acidic conditions, the excited-state proton-transfer (ESPT) reaction is irreversible, in contrast to previous literature data. We found that the prototropic species are equilibrated at the excited state (pK(a)* = 1.

View Article and Find Full Text PDF

A great variety of technological applications makes photochromism a currently appealing theme for basic studies. In this work, excited state dynamics of two spirooxazines and two naphthopyrans, that upon UV irradiation undergo thermally reversible conversion to coloured photomerocyanines, have been investigated by using pump-probe techniques (femtosecond time resolution). The breakage of the C-O bond, involved in the photoreaction, has been found to occur within a few hundreds of femtoseconds producing a first transient that evolved on picosecond time-scale to the most stable isomer through a number of intermediates that depended on the solvent and the structure of the photochrome.

View Article and Find Full Text PDF

In this article, we report a study on the singlet and triplet excited-state properties of a spirooxazine (1,3-dihydro-3,3-dimethyl-1-isobutyl-6'-(2,3-dihydro-1H-indol-1-yl)spiro[2H-indole-2,3'-3H-naphtho[2,1-b][1,4]oxazine]). The singlet state of this molecule is photoreactive: upon UV light stimulation, it produces a colored merocyanine that thermally reverts to the starting compound. A double-way radiative relaxation path was found for singlet-state excitation.

View Article and Find Full Text PDF