The gastrointestinal tract of , a solitary tunicate that siphon-filters water, shares similarities with its mammalian counterpart. The gut exhibits other features that are unique to protochordates, including certain immune molecules, and other characteristics, e.g.
View Article and Find Full Text PDFA variety of germline and somatic immune mechanisms have evolved in vertebrate and invertebrate species to detect a wide array of pathogenic invaders. The gut is a particularly significant site in terms of distinguishing pathogens from potentially beneficial microbes. Ciona intestinalis, a filter-feeding marine protochordate that is ancestral to the vertebrate form, possesses variable region-containing chitin-binding proteins (VCBPs), a family of innate immune receptors, which recognize bacteria through an immunoglobulin-type variable region.
View Article and Find Full Text PDFNotothenioidei are typical Antarctic teleosts evolved to adapt to the very low temperatures of the Antarctic seas. Aim of the present paper is to investigate sequence and structure of C3, the third component of the complement system of the notothenioid Trematomus bernacchii and Chionodraco hamatus. We determined the complete nucleotide sequence of two C3 isoforms of T.
View Article and Find Full Text PDFVariable region-containing chitin-binding proteins (VCBPs) are secreted, immune-type molecules that have been described in both amphioxus, a cephalochordate, and sea squirt, Ciona intestinalis, a urochordate. In adult Ciona, VCBP-A, -B and -C are expressed in hemocytes and the cells of the gastrointestinal tract. VCBP-C binds bacteria in the stomach lumen and functions as an opsonin in vitro.
View Article and Find Full Text PDFIt is now widely understood that all animals engage in complex interactions with bacteria (or microbes) throughout their various life stages. This ancient exchange can involve cooperation and has resulted in a wide range of evolved host-microbial interdependencies, including those observed in the gut. Ciona intestinalis, a filter-feeding basal chordate and classic developmental model that can be experimentally manipulated, is being employed to help define these relationships.
View Article and Find Full Text PDFFish Shellfish Immunol
October 2012
In the tunicate Ciona intestinalis, the ciliated pharynx, which connects the external environment to a highly developed and compartmentalized gastrointestinal system, represents the natural portal of entry for a vast and diverse, potentially pathogenic microbial community. To address the role of the pharynx in immune surveillance in Ciona, we asked whether C3, the key component of the complement system, was expressed in this organ and whether the encoded protein was functionally active. We found by real-time PCR that C3, constitutively expressed in the pharynx, is up-regulated by LPS injection.
View Article and Find Full Text PDFComplex symbiotic interactions at the surface of host epithelia govern most encounters between host and microbe. The epithelium of the gut is a physiologically ancient structure that is comprised of a single layer of cells and is thought to possess fully developed immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last common ancestor of all vertebrates, is a potentially valuable model for studying barrier defenses and gut microbial immune interactions.
View Article and Find Full Text PDFA number of different classes of molecules function as structural matrices for effecting innate and adaptive immunity. The most extensively characterized mediators of adaptive immunity are the immunoglobulins and T-cell antigen receptors found in jawed vertebrates. In both classes of molecules, unique receptor specificity is effected through somatic variation in the variable (V) structural domain.
View Article and Find Full Text PDFC-type lectins play an important role in the immune system and are part of a large superfamily that includes C-type lectin-like domain (CTLD)-containing proteins. Divergent evolution, acting on the CTLD fold, has generated the Ca2+-dependent carbohydrate-binding lectins and molecules, as the lectin-like natural killer (NK) receptors that bind proteins, rather than sugars, in a Ca(2+)-independent manner. We have studied ciCD94-1, a CTLD-containing protein from the tunicate Ciona intestinalis, which is a homolog of the CD94 vertebrate receptor that is expressed on NK cells and modulates their cytotoxic activity by interacting with MHC class I molecules.
View Article and Find Full Text PDFAmmonium uptake into the cell is known to be mediated by ammonium transport (Amt) proteins, which are present in all domains of life. The physiological role of Amt proteins remains elusive; indeed, loss-of-function experiments suggested that Amt proteins do not play an essential role in bacteria, yeast, and plants. Here we show that the reverse holds true in the tunicate Ciona intestinalis.
View Article and Find Full Text PDFIn mammals, the bioactive fragment C3a, released from C3 during complement activation, is a potent mediator of inflammatory reactions and exerts its functional activity through the specific binding to cell surface G protein-coupled seven-transmembrane receptors. Recently, we demonstrated a Ciona intestinalis C3a (CiC3a)-mediated chemotaxis of hemocytes in the deuterostome invertebrate Ciona intestinalis and suggested an important role for this molecule in inflammatory processes. In the present work, we have cloned and characterized the receptor molecule involved in the CiC3a-mediated chemotaxis and studied its expression profile.
View Article and Find Full Text PDFDeuterostome invertebrates possess complement genes, and in limited instances complement-mediated functions have been reported in these organisms. However, the organization of the complement pathway(s), as well as the functions exerted by the cloned gene products, are largely unknown. To address the issue of the presence of an inflammatory pathway in ascidians, we expressed in Escherichia coli the fragment of Ciona intestinalis C3-1 corresponding to mammalian complement C3a (rCiC3-1a) and assessed its chemotactic activity on C.
View Article and Find Full Text PDFGenome-wide sequence analysis in the invertebrate chordate, Ciona intestinalis, has provided a comprehensive picture of immune-related genes in an organism that occupies a key phylogenetic position in vertebrate evolution. The pivotal genes for adaptive immunity, such as the major histocompatibility complex (MHC) class I and II genes, T-cell receptors, or dimeric immunoglobulin molecules, have not been identified in the Ciona genome. Many genes involved in innate immunity have been identified, including complement components, Toll-like receptors, and the genes involved in intracellular signal transduction of immune responses, and show both expansion and unexpected diversity in comparison with the vertebrates.
View Article and Find Full Text PDFThe recent identification of complement components in deuterostome invertebrates has indicated the presence of a complement system operating via an alternative pathway in echinoderms and tunicates and via a MBL-mediated pathway thus far identified only in tunicates. Here, we report the isolation of two C3-like genes, CiC3-1 and CiC3-2, from blood cell total RNA of the ascidian Ciona intestinalis. The deduced amino acid sequences of both Ciona C3-like proteins exhibit a canonical processing site for alpha and beta chains, a thioester site with an associated catalytic histidine and a convertase cleavage site, thus showing an overall similarity to the other C3 molecules already characterized.
View Article and Find Full Text PDFSelf-incompatibility, a mechanism that prevents self-fertilization in ascidians, is based on the ability of the oocyte vitelline coat to distinguish and accept only heterologous spermatozoa. In Ciona intestinalis self-discrimination is established during late oogenesis and is contributed or controlled by products of the overlying follicle cells. In this study we have further investigated the role of the follicle cells in the onset of self-discrimination by using in vitro maturation of ovarian oocytes deprived of the follicle cells and incubated with either autologous or heterologous follicle cells.
View Article and Find Full Text PDFIn the ascidian Ciona intestinalis the species-specific interaction between the spermatozoon and the egg occurs between the vitelline coat (VC) of the egg and the plasma membrane of the apical part of the head of the spermatozoa. Concanavalin A (Con A)-binding sites are present on this area of the sperm surface. We used Con A to identify and isolate the spermatozoon plasma membrane components that may be involved in the interaction with the VC.
View Article and Find Full Text PDFSperm-egg interaction in the ascidian Ciana intestinalis is mediated by a fucosyl-glycoprotein (FP) component of the egg vitelline coat. FP are responsible for sperm binding, sperm activation and the acrosome reaction. In this paper we report a detailed biochemical and functional characterization of FP purified from the ovaries by affinity chromatography.
View Article and Find Full Text PDFWe have studied the differentiation of the vitelline envelope (V.E.) of the oocyte of the anuran Xenopus laevis.
View Article and Find Full Text PDF