Publications by authors named "Maria Rosaria Imperato"

Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease caused by a variety of alterations in transcription factors, epigenetic regulators and signaling molecules. To determine how different mutant regulators establish AML subtype-specific transcriptional networks, we performed a comprehensive global analysis of cis-regulatory element activity and interaction, transcription factor occupancy and gene expression patterns in purified leukemic blast cells. Here, we focused on specific subgroups of subjects carrying mutations in genes encoding transcription factors (RUNX1, CEBPα), signaling molecules (FTL3-ITD, RAS) and the nuclear protein NPM1).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used label-free quantitative proteomics to identify 50 unique plasma membrane proteins that help isolate genetically distinct subclones from AML patients, revealing differences in drug sensitivity and growth.
  • * The study demonstrates that these identified markers can be utilized for better cancer diagnosis and treatment by tracking specific leukemic clones in patients over time.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease caused by recurrent mutations in the transcription regulatory machinery, resulting in abnormal growth and a block in differentiation. One type of recurrent mutations affects , which is subject to mutations and translocations, the latter giving rise to fusion proteins with aberrant transcriptional activities. We recently compared the mechanism by which the products of the t(8;21) and the t(3;21) translocation RUNX1-ETO and RUNX1-EVI1 reprogram the epigenome.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events.

View Article and Find Full Text PDF

The differentiation from multipotent hematopoietic stem cells (HSC) to mature and functional blood cells requires the finely tuned regulation of gene expression at each stage of development. Specific transcription factors play a key role in this process as they modulate the expression of their target genes in an exquisitely lineage-specific manner. A large number of important transcriptional regulators have been identified which establish and maintain specific gene expression patterns during hematopoietic development.

View Article and Find Full Text PDF

Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion.

View Article and Find Full Text PDF

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease caused by impaired functioning of human liver aldolase (ALDOB). At least 54 subtle/point mutations and only two large intragenic deletions have been found in the ALDOB gene. Here we report two novel ALDOB variants (p.

View Article and Find Full Text PDF