Premise: Unlike most flowering plants, orchid flowers have under-developed ovules that complete development only after pollination. Classical studies reported variation in the stage in which ovule development is arrested, but the extent of this variation and its evolutionary and ecological significance are unclear.
Methods: Here, we used light microscopy to observe ovule development at anthesis for 39 species not previously studied and surveyed the literature gaining information on 94 orchid species.
Background And Aims: The gymnosperm order Cycadales is pivotal to our understanding of seed-plant phylogeny because of its phylogenetic placement close to the root node of extant spermatophytes and its combination of both derived and plesiomorphic character states. Although widely considered a 'living fossil' group, extant cycads display a high degree of morphological and anatomical variation. We investigate stomatal development in Zamiaceae to evaluate variation within the order and homologies between cycads and other seed plants.
View Article and Find Full Text PDFOrchids, differently from most flowering plants, have under-differentiated ovules at anthesis that require pollination to complete differentiation. This ovule developmental stage has been often observed in tropical species in which the absence of an evident seasonality may allow plants to extend their phenology beneficiating of a long time for post-pollination events. Here, we used scanning electron microscopy (SEM) to detect ovule integument developmental stages in 21 species of Mediterranean Orchidoideae and Epidendroideae and in 11 tropical Epidendroideae with the aim of understanding whether species with a seasonal constraint and shorter time for post-pollination ovule maturation are characterized by different stages of ovule development at anthesis.
View Article and Find Full Text PDF