The metabolic and physiologic responses to healthy dietary habits and physical exercise have become an increasingly interesting research area, since equilibrated diet and regular physical activity are commonly recommended for their antioxidant capacity and for the prevention and treatment of several disorders as insulin resistance, dyslipidemia, obesity, and hypertension that may result in cardiovascular disease and type II diabetes.Nutritional and exercise-induced responses and the biological mechanisms that explain these associations have been tackled by several researchers using metabolomic approaches that have emerged as a powerful tool to comprehensively evaluate individual metabolic signatures, analyzing metabolome composition in serum, urine, stool, or tissue samples.The overview of the wide range of metabolites related to dietary and to physical training interventions reported from numerous human or animal studies endorses the complexity for assessing metabolic changes and compound identification, and a combination of targeted and non-targeted global profiling studies is recommended for increasing the understanding of nutrition and exercise metabolic mechanisms.
View Article and Find Full Text PDFIn recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity.
View Article and Find Full Text PDFUntargeted metabolomic analyses of plasma and red blood cells (RBCs) can provide complementary information on biomarkers of food consumption. To assess blood collection differences in biomarkers, fasting blood was drawn from 10 healthy individuals using sodium citrate and lithium heparin as anticoagulants. Plasma and RBCs were separated into aqueous and lipid fractions to be analyzed using 1D and 2D (1)H NMR spectroscopy.
View Article and Find Full Text PDFThis paper reports the results of an assessment of volatile organic compound (VOCs) levels in ambient air in samples collected at urban and industrial sites in southern Catalonia, which is home to one of the most important petrochemical complexes in southern Europe. This study contains data from a total of 192 samples collected in 2007, from May to October, at six air pollution measurement stations within the area of influence of several chemical and petrochemical industrial plants. The ambient air concentrations of a group of 65 VOCs, some of them ozone precursors, were determined by active sampling into sorbent tubes, thermal desorption and gas chromatography-mass spectrometry.
View Article and Find Full Text PDFPressurised liquid extraction (PLE) was applied to determine the atmospheric levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the gas and particulate phases. The method involved high-volume air sampling with quartz fibre filters (QFFs) and polyurethane foam (PUF) plugs and analytes were subsequently extracted from the samples by PLE, and determined with GC-MS. We optimised the PLE conditions for the solvent, the number of cycles and extraction temperature.
View Article and Find Full Text PDFAnnual trends of a group of 66 volatile organic compounds (VOCs), containing 20 ozone precursors, were the aim of a sampling campaign carried out for a year in air at urban and industrial areas from Tarragona region. VOCs were determined by active collection on multisorbent tubes, followed by thermal desorption and gas chromatography-mass spectrometry. The analytical method was developed and validated, showing good levels of detection and quantification, recoveries, precision, and linearity for all the compounds in the range being studied.
View Article and Find Full Text PDFThe concentrations of seven volatile organic sulfur compounds (VOSCs) in air samples were determined by active collection on multisorbent tubes followed by two-stage thermal desorption and gas chromatography-mass spectrometry. The compounds studied were ethyl mercaptan (CH(3)CH(2)SH), dimethyl sulfide ((CH(3))(2)S), carbon disulfide (CS(2)), propyl mercaptan (C(3)H(8)S), butyl mercaptan (C(4)H(10)S), dimethyl disulfide ((CH(3))(2)S(2)) and 1-pentanethiol (C(5)H(12)S). Active collection on SilcoSteel multisorbent tubes enabled an air volume of 3000ml to be sampled without observing breakthrough.
View Article and Find Full Text PDF