Regulation of messenger RNA stability is pivotal for programmed gene expression in bacteria and is achieved by a myriad of molecular mechanisms. By bulk sequencing of 5' monophosphorylated mRNA decay intermediates (5'P), we show that cotranslational mRNA degradation is conserved among both Gram-positive and -negative bacteria. We demonstrate that, in species with 5'-3' exonucleases, the exoribonuclease RNase J tracks the trailing ribosome to produce an in vivo single-nucleotide toeprint of the 5' position of the ribosome.
View Article and Find Full Text PDFNAR Genom Bioinform
December 2020
In eukaryotes, 5'-3' co-translation degradation machinery follows the last translating ribosome providing an footprint of its position. Thus, 5' monophosphorylated (5'P) degradome sequencing, in addition to informing about RNA decay, also provides information regarding ribosome dynamics. Multiple experimental methods have been developed to investigate the mRNA degradome; however, computational tools for their reproducible analysis are lacking.
View Article and Find Full Text PDF