Background: The influence of food advertising on food preferences and consumption could also contribute to the socio-economic inequalities among Spanish children in terms of eating habits and childhood obesity. Although the main food advertising channel targeted at children in Spain is television, available studies estimate exposure indirectly by combining content data with audience data. The aim of this study was therefore to describe the frequency of exposure to television advertising of unhealthy foods and drinks, measured directly, among Spanish children and adolescents, and analyse its socio-economic inequalities.
View Article and Find Full Text PDFGlycosyltransferases catalyze the regioselective glycosylation of polyphenolic compounds, increasing their solubility without altering their antioxidant properties. Leloir-type glycosyltransferases require UDP-glucose as a cofactor to glycosylate a hydroxyl of the polyphenol, which is expensive and unstable. To simplify these processes for industrial implementation, the preparation of self-sufficient heterogeneous biocatalysts is needed.
View Article and Find Full Text PDF6-Aminocaproic acid (6ACA) is a key building block and an attractive precursor of caprolactam, which is used to synthesize nylon 6, one of the most common polymers manufactured nowadays. (Bio)-production of platform chemicals from renewable feedstocks is instrumental to tackle climate change and decrease fossil fuel dependence. Here, the cell-free biosynthesis of 6ACA from 6-hydroxycaproic acid was achieved using a co-immobilized multienzyme system based on horse liver alcohol dehydrogenase, Halomonas elongata transaminase, and Lactobacillus pentosus NADH oxidase for in-situ cofactor recycling, with >90 % molar conversion (m.
View Article and Find Full Text PDFElectrochemical continuous-flow reactors offer a great opportunity for enhanced and sustainable chemical syntheses. Here, we present a novel application of electrochemical continuous-flow oscillatory baffled reactors (ECOBRs) that combines advanced mixing features with electrochemical transformations to enable efficient electrochemical oxidations under continuous flow at a millimeter distance between electrodes. Different additive manufacturing techniques have been employed to rapidly fabricate reactors.
View Article and Find Full Text PDFThe synthesis of enantiopure chiral amines from racemic alcohols is a key transformation in the chemical industry, e. g., in the production of active pharmaceutical ingredients (APIs).
View Article and Find Full Text PDFSeventy-eight calves from Asturiana de los Valles, Retinta, and Rubia Gallega breeds, under extensive and intensive farm systems and animal mixing and non-mixing conditions, and during the transport and lairage in slaughterhouses, were studied. This research aimed to study the effect of breed, farm system and mixing conditions on serum biomarkers (cortisol, lactate, glucose, serum amyloid A, haptoglobin, and C-reactive protein) and their relationship with pH at slaughter time, and to evaluate the response of the serum biomarkers of calves throughout fattening period. Moreover, this study aims to evaluate the response of the biomarkers in each breed during the fattening period.
View Article and Find Full Text PDFAs an alternative to classical synthetic approaches for the production of betazole drug, a one-pot biocatalytic system for this pharmaceutical molecule from its alcohol precursor has been developed. An ω-transaminase, an alcohol dehydrogenase and a water-forming NADH oxidase for cofactor recycling have been combined to catalyse this reaction, yielding 75% molar conversion in batch reactions with soluble enzymes. This multienzyme system was then co-immobilised through a newly established protocol for sequential functionalization of a methacrylate-based porous carrier to enable tailored immobilisation chemistries for each enzyme.
View Article and Find Full Text PDFNew bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared.
View Article and Find Full Text PDFThe immobilization of proteins on heterofunctional amino-epoxy and amino-glyoxyl supports is described in this chapter. Immobilization on both supports is performed through a two-step mechanism: in the first step, the enzyme is physically adsorbed to the support, and in the second step, the intramolecular covalent attachment between the adsorbed enzyme and the support is promoted. On the one hand, amino-epoxy supports present a ratio between amino and epoxy groups of 1:1 to allow the rapid adsorption of the enzyme and promote a strong multipoint covalent linkage.
View Article and Find Full Text PDFEnzymatic immobilization has been at the forefront of applied biocatalysis as it enables convenient isolation and reuse of the catalyst if the target reaction is conducted in batch, and it has opened up significant opportunities to conduct biocatalysis in continuous mode. Over the last few years, an array of techniques to immobilize enzymes have been developed, spanning from covalent multipoint attachment to noncovalent electrostatic strategies to rational architecture to suitably orient the enzyme(s). In addition, new materials have been adapted to support biological catalysts.
View Article and Find Full Text PDFBioresour Technol
October 2018
The present study focuses on the development and optimization of a packed-bed reactor (PBR) for continuous production of xylooligosaccharides (XOS) from xylan. For this purpose, three different methacrylic polymer-based supports (Relizyme R403/S, Purolite P8204F and Purolite P8215F) activated with glyoxyl groups were morphologically characterized and screened for the multipoint covalent immobilization of a xylanase. Based on its physical and mechanical properties, maximum protein loading and thermal stability, Relizyme R403/S was selected to set up a PRB for continuous production of XOS from corncob xylan.
View Article and Find Full Text PDFN Biotechnol
September 2018
Xylooligosaccharides display interesting prebiotic effects on human health. The endoxylanase Xys1Δ, from Streptomyces halstedii JM8, was immobilized and stabilized on glyoxyl-agarose beads by multipoint covalent attachment using a novel strategy based on surface coating with a multilayer of polymers. The optimal modification consisted of surface coating with a bilayer formed by a layer of derived dextran polymers and a layer of polyethylenimine.
View Article and Find Full Text PDFβ-Xylosidases are critical for complete degradation of xylan, the second main constituent of plant cell walls. A minor β-xylosidase (BXYL II) from Penicillium janczewskii was purified by ammonium sulfate precipitation (30% saturation) followed by DEAE-Sephadex chromatography in pH 6.5 and elution with KCl.
View Article and Find Full Text PDFMonoaza- and diaza-derivatives of malondialdehydes, in short aminoacroleins and vinamidines, are prototypical examples of open-chain structures prone to π-electron delocalization, for which intramolecular hydrogen bonding enhances (or diminishes) their pseudoaromaticity depending on the substitution pattern. This interplay is illustrated herein by DFT-based calculations of aromaticity indices in the gas phase and polar solvents. Elucidation of transition structures involved in tautomeric conversions helps to solve how the intramolecular hydrogen transfer occurs.
View Article and Find Full Text PDFMono- and diaza-derivatives of malondialdehydes, namely 3-alkyl(aryl)amino-2-arylacroleins and 1,5-dialkyl(aryl)-3-arylvinamidines are open-chain systems in which extended electron delocalization and pseudoaromaticity can be envisaged. A set of diversely functionalized compounds has been synthesized and characterized by spectroscopic data and X-ray diffractometry. Quantum-chemical calculations were performed for all possible neutral tautomers and conformers in the gas phase and compared to those in polar solvents (CHCl3, DMSO, and EtOH) at the M06-2X/6-311++G(d,p) level.
View Article and Find Full Text PDF