A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.
View Article and Find Full Text PDFFour diphenyl pyrene-derived aminophosphonates were synthesized. Attempts were made to synthesize diphenyl N-(R)-α-methylbenzylamino(pyren-1-yl)methylphosphonate (3e) in order to obtain the chiral aminophosphonate bearing a pyrene moiety. Because these attempts failed, dimethyl and dibenzyl N-(R)-α-methylbenzyl substituted aminophosphonates 4 and 5 were synthesized and the predominant diastereoisomer of dimethyl aminophosphonate 4 was isolated.
View Article and Find Full Text PDFUnlabelled: Given their simple and easy-to-manipulate chemical structures, short-chain fatty acids (SCFAs) are valuable feedstocks for many industrial applications. While the microbial production of SCFAs by engineered Escherichia coli has been demonstrated recently, productivity and yields are limited by their antimicrobial properties. In this work, we performed a comparative proteomic analysis of E.
View Article and Find Full Text PDFMild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific productivity of r-proteins. To separately analyze the effects of mild hypothermia and specific growth rate on CHO cell metabolism and recombinant human tissue plasminogen activator productivity as a model system, high dilution rate (0.
View Article and Find Full Text PDFWiley Interdiscip Rev Syst Biol Med
March 2014
Fatty acids (FAs) are essential components of cellular structure and energy-generating routes in living organisms. They exist in a variety of chemical configurations and functionalities and are catabolized by different oxidative routes, according to their structure. α- and ω-Oxidation are minor routes that occur only in eukaryotes, while β-oxidation is the major degradation route in eukaroytes and prokaryotes.
View Article and Find Full Text PDFWhile we have recently constructed a functional reversal of the β-oxidation cycle as a platform for the production of fuels and chemicals by engineering global regulators and eliminating native fermentative pathways, the system-level approach used makes it difficult to determine which of the many deregulated enzymes are responsible for product synthesis. This, in turn, limits efforts to fine-tune the synthesis of specific products and prevents the transfer of the engineered pathway to other organisms. In the work reported here, we overcome the aforementioned limitations by using a synthetic biology approach to construct and functionally characterize a reversal of the β-oxidation cycle.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
November 2012
Methyl ketones are a group of highly reduced platform chemicals with widespread applications in the fragrance, flavor and pharmacological industries. Current methods for the industrial production of methyl ketones include oxidation of hydrocarbons, but recent advances in the characterization of methyl ketone synthases from wild tomato have sparked interest towards the development of microbial platforms for the industrial production of methyl ketones. A functional methyl ketone biosynthetic pathway was constructed in Escherichia coli by over-expressing two genes from Solanum habrochaites: shmks2, encoding a 3-ketoacyl-ACP thioesterase, and shmks1, encoding a beta-decarboxylase.
View Article and Find Full Text PDF