Publications by authors named "Maria Rocio Meini"

Sudden Death Syndrome (SDS) caused by Fusarium tucumaniae is a significant threat to soybean production in Argentina. This study assessed the susceptibility of SY 3 × 7 and SPS 4 × 4 soybeans cultivars to F. tucumaniae and studied changes in root isoflavone levels after infection.

View Article and Find Full Text PDF

Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties.

View Article and Find Full Text PDF

Soybean is one of the greatest crops in the world, with about 348.7 million tons being produced in 2018. Soybean hull is a by-product produced during the processing of soybean to obtain flour and oil.

View Article and Find Full Text PDF

The global amount of soybean and wheat produced is about 350 and 750 million metric tons every year, respectively. In consequence, huge amounts of waste are produced from them. The aim of this work was to employ two wastes -soybean husk and flour mill waste- to produce high quantities of alpha-amylase enzyme.

View Article and Find Full Text PDF

Phenolic compounds are highly valuable products that remain trapped in grape pomace, an abundant winery by-product. Therefore, efficient extraction procedures of these compounds represent a route for grape pomace valorisation. Here we performed a screening of the factors affecting the aqueous enzymatic extraction of phenolic compounds from Syrah grape pomace, including the following independent variables: temperature, pH, pectinase, cellulase and tannase; and a subsequent optimization through response surface methodology.

View Article and Find Full Text PDF

Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes.

View Article and Find Full Text PDF

Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution.

View Article and Find Full Text PDF

The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases.

View Article and Find Full Text PDF

A number of multiresistant bacterial pathogens inactivate antibiotics by producing Zn(II)-dependent β-lactamases. We show that metal uptake leading to an active dinuclear enzyme in the periplasmic space of Gram-negative bacteria is ensured by a cysteine residue, an unusual metal ligand in oxidizing environments. Kinetic, structural and affinity data show that such Zn(II)-cysteine interaction is an adaptive trait that tunes the metal binding affinity, thus enabling antibiotic resistance at restrictive Zn(II) concentrations.

View Article and Find Full Text PDF