In developed countries, cardiovascular diseases are currently the first cause of death. Cardiospheres (CSs) and cardiosphere-derived cells (CDCs) have been found to have the ability to regenerate the myocardium after myocardial infarction (MI). In recent years, much effort has been made to gain insight into the human heart repair mechanisms, in which miRNAs have been shown to play an important role.
View Article and Find Full Text PDFZika virus (ZIKV) is a flavivirus with a marked effect on fetal nervous system development. ZIKV treatment has recently been found to also have a benefit against glioblastoma, a highly aggressive brain tumor with a poor prognosis. The reported data do not completely explain the mechanism beyond this effect.
View Article and Find Full Text PDFIn the past few decades, numerous approaches have been developed to investigate protein-protein and protein-nucleic acid interactions (PPIs and PNIs). Affinity purification methods such as co-immunoprecipitation (co-IP) are commonly used to detect and isolate the macromolecular complexesresulting from these interactions. In this article, we describe a two-step co-immunoprecipitation (TIP) technique.
View Article and Find Full Text PDFMiR34 involvement in myocardial injury repair and ageing has been well documented in mouse model. Our aim was to establish whether the inhibition of miR34 expression through locked nucleic acid (LNA) could be used as a pharmacological intervention to enhance human heart repair. Cardiac progenitor cells were obtained by right atrial specimen collection during intraoperative procedures.
View Article and Find Full Text PDFCoimmunoprecipitation (co-IP) is one of the most frequently used techniques to study protein-protein (PPIs) or protein-nucleic acid interactions (PNIs). However, the presence of coprecipitated contaminants is a well-recognized issue associated with single-step co-IPs. To overcome this limitation, we developed the two-step co-IP (TIP) strategy that enables sequential coimmunoprecipitations of endogenous protein complexes.
View Article and Find Full Text PDFFunctionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens.
View Article and Find Full Text PDFThe epidermis is a stratified epithelium with a stem cell subpopulation in the basal layer that constantly replicates and periodically detaches from the base, undergoing a differentiation process that involves various developmental signals and regulatory pathways. During the last 10 years, a number of studies tried to elucidate the intricate scenario that maintains the epithelial shield during the entire life span. In our study, we investigated the role of Numb in the skin compartment and, in particular, its involvement in stem cell maintenance.
View Article and Find Full Text PDFCD200 is a relatively ubiquitously expressed molecule that plays a role in cancer immune evasion through interaction with its receptors. High expression levels of CD200 have been described in different human malignancies. For example, CD200 has been shown to be targeted after RAS/RAF/MEK/ERK activation in melanoma.
View Article and Find Full Text PDFDespite the use of multimodality therapy using cisplatin to treat patients with advanced stage squamous cell carcinoma of the head and neck (HNSCC), there is an unacceptably high rate of treatment failure. TP53 is the most commonly mutated gene in HNSCC, and the impact of p53 mutation on response to cisplatin treatment is poorly understood. Here, we show unambiguously that wild-type TP53 (wtp53) is associated with sensitivity of HNSCC cells to cisplatin treatment, whereas mutation or loss of TP53 is associated with cisplatin resistance.
View Article and Find Full Text PDFHematopoietic stem cells transplantation has been successfully used in the treatment of patients with hematological malignances. A better knowledge of the mechanisms beyond their ability to completely repopulate the entire hematopoietic system would help in the treatment of hematological diseases. For this reason we focused our studies on a cell population that has been demonstrated to have some peculiar characteristics among the stem cells: CD34+KDR+ cells.
View Article and Find Full Text PDF