Cr-doped VO thin film shows a huge resistivity change with controlled epitaxial strain at room temperature as a result of a gradual Mott metal-insulator phase transition with strain. This novel piezoresistive transduction principle makes Cr-doped VO thin film an appealing piezoresistive material. To investigate the piezoresistivity of Cr-doped VO thin film for implementation in MEMS sensor applications, the resistance change of differently orientated Cr-doped VO thin film piezoresistors with external strain change was measured.
View Article and Find Full Text PDFDimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (VO) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin VO films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Integration of graphene into various electronic devices requires an ultrathin oxide layer on top of graphene. However, direct thin film growth of oxide on graphene is not evident because of the low surface energy of graphene promoting three-dimensional island growth. In this study, we demonstrate the growth of ultrathin vanadium oxide films on a highly oriented pyrolytic graphite (HOPG) surface, which mimics the graphene surface, using (oxygen-assisted) molecular beam epitaxy, followed by a post-annealing.
View Article and Find Full Text PDF