Publications by authors named "Maria Ranieri-Raggi"

Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD) and the metal binding protein histidine-proline-rich glycoprotein (HPRG) acts in this manner.

View Article and Find Full Text PDF

We have previously provided evidence for a dinuclear zinc site in rabbit skeletal muscle AMPD compatible with a (micro-aqua)(micro-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site. XAS of the zinc binding site of the enzyme in the presence of PRN favors a model where PRN is added to the coordination sphere of one of the two zinc ions increasing its coordination number to five. The uncompetitive nature of the inhibition of AMPD by fluoride reveals that the anion probably displaces the nucleophile water molecule terminally coordinated to the catalytic Zn(1) ion at the enzyme C-terminus, following the binding of AMP at the Zn(2) ion located at N-terminus of the enzyme.

View Article and Find Full Text PDF

XAS of Zn-peptide binary and ternary complexes prepared using peptides mimicking the potential metal binding sites of rabbit skeletal muscle AMP deaminase (AMPD) strongly suggest that the region 48-61 of the enzyme contains a zinc binding site, whilst the region 360-372 of the enzyme is not able to form 1:1 complexes with zinc, in contrast with what has been suggested for the corresponding region of yeast AMPD. XAS performed on fresh preparations of rabbit skeletal muscle AMPD provides evidence for a dinuclear zinc site in the enzyme compatible with a (mu-aqua)(mu-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site and a Zn-Zn distance of about 3.3 Angstrom.

View Article and Find Full Text PDF

We have previously described that, in healthy human skeletal muscle, an anti-histidine-proline-rich-glycoprotein (HPRG) antibody selectively binds to type IIB fibers that are well known to contain the highest level of AMP deaminase (AMPD) activity, suggesting an association of the HPRG-like protein to the enzyme isoform M. The present paper reports an immunohistochemical study performed on human skeletal muscle biopsies from patients with AMPD deficiency and carried out utilizing both the anti-HPRG antibody and an anti-AMPD antibody specific for the isoform M. A correlation between the muscle content of the HPRG-like protein and the level of AMPD activity was demonstrated.

View Article and Find Full Text PDF

The histidine-proline-rich glycoprotein (HPRG) component of rabbit skeletal muscle AMP deaminase under denaturing and reducing conditions specifically binds to a Zn(2+)-charged affinity column and is only eluted with an EDTA-containing buffer that strips Zn(2+) from the gel. The isolated protein is homogeneous showing an apparent molecular weight (MW) of 95000 and the N-terminal sequence L-T-P-T-D-X-K-T-T-K-P-L-A-E-K-A-L-D-L-I, corresponding to that of rabbit plasma HPRG. The incubation with peptide-N-glycosidase F promotes the reduction of the apparent MW of isolated HPRG to 70000, characterizing it as a N-glycosylated protein.

View Article and Find Full Text PDF

The experimental setup of beamline ID26 at ESRF (Grenoble) has been successfully exploited to obtain high-quality XAS (X-ray absorption spectroscopy) data from a biological sample where the metal concentration is about 100 micro M. The sample consists of the adenosine monophosphate deaminase (AMPD) histidine proline rich glycoprotein (HPRG) complex that contains 3-4 Zn(II) ions per dimer of approximately 320 kDa molecular weight. The experiment shows that third-generation X-ray sources equipped with insertion devices and appropriate optics and detectors allow the investigation of complex biological systems where the metal concentration is intrinsically low.

View Article and Find Full Text PDF

The AMP deaminase-associated variant of histidine-proline-rich glycoprotein (HPRG) is isolated from rabbit skeletal muscle by a modification of the protocol previously used for the purification of AMP deaminase. This procedure yields highly pure HPRG suitable for investigation by x-ray absorption spectroscopy of the zinc-binding behavior of the protein. X-ray absorption spectroscopy analysis of a 2:1 zinc-HPRG complex shows that zinc is bound to the protein, most probably in a dinuclear cluster where each Zn(2+) ion is coordinated, on average, by three histidine ligands and one heavier ligand, likely a sulfur from a cysteine.

View Article and Find Full Text PDF