Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8 T cells (NeoTCR). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCR T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts.
View Article and Find Full Text PDFEfforts to apply adoptive cell transfer (ACT) immunotherapy to patients with common epithelial cancers have been stimulated by the demonstration that the majority of these patients contain lymphocytes reactive against the expressed products of their cancer mutations. Early efforts to specifically target these antigens have been promising.
View Article and Find Full Text PDFBackground: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice.
View Article and Find Full Text PDFAdoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types.
View Article and Find Full Text PDFA common theme across multiple successful immunotherapies for cancer is the recognition of tumor-specific mutations (neoantigens) by T cells. The rapid discovery of such antigen responses could lead to improved therapies through the adoptive transfer of T cells engineered to express neoantigen-reactive T cell receptors (TCRs). Here, through CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and TCR-seq of non-small cell lung cancer (NSCLC) tumor-infiltrating lymphocytes (TILs), we develop a neoantigen-reactive T cell signature based on clonotype frequency and CD39 protein and CXCL13 mRNA expression.
View Article and Find Full Text PDFThe accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8 and CD4 neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs.
View Article and Find Full Text PDFPurpose: Metastatic breast cancer (mBrCa) is most often an incurable disease with only modest responses to available immunotherapies. This study investigates the immunogenicity of somatic mutations in breast cancer and explores the therapeutic efficacy in a pilot trial of mutation-reactive tumor-infiltrating lymphocytes (TILs) in patients with metastatic disease.
Patients And Methods: Forty-two patients with mBrCa refractory to previous lines of treatment underwent surgical resection of a metastatic lesion(s), isolation of TIL cultures, identification of exomic nonsynonymous tumor mutations, and immunologic screening for neoantigen reactivity.
Tumor neoepitopes presented by major histocompatibility complex (MHC) class I are recognized by tumor-infiltrating lymphocytes (TIL) and are targeted by adoptive T-cell therapies. Identifying which mutant neoepitopes from tumor cells are capable of recognition by T cells can assist in the development of tumor-specific, cell-based therapies and can shed light on antitumor responses. Here, we generate a ranking algorithm for class I candidate neoepitopes by using next-generation sequencing data and a dataset of 185 neoepitopes that are recognized by HLA class I-restricted TIL from individuals with metastatic cancer.
View Article and Find Full Text PDFPurpose: Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots.
View Article and Find Full Text PDFEngineered T cells expressing tumor-specific T-cell receptors (TCRs) are emerging as a mode of personalized cancer immunotherapy that requires identification of TCRs against the products of known driver mutations and novel mutations in a timely fashion. We present a nonviral and non-next-generation sequencing platform for rapid, and efficient neoantigen-specific TCR identification and evaluation that does not require the use of recombinant cloning techniques. The platform includes an innovative method of TCRα detection using Sanger sequencing, TCR pairings and the use of TCRα/β gene fragments for putative TCR evaluation.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate antigen experienced T cells in peripheral blood lymphocytes (PBL) for responses to p53 neoantigens.
Experimental Design: PBLs from patients with a mutated tumor were sorted for antigen-experienced T cells and stimulation (IVS) was performed with p53 neoantigens. The IVS cultures were stimulated with antigen-presenting cells expressing p53 neoantigens, enriched for 41BB/OX40 and grown with rapid expansion protocol.
Tumor-resident lymphocytes can mount a response against neoantigens expressed in microsatellite-stable gastrointestinal (GI) cancers, and adoptive transfer of neoantigen-specific lymphocytes has demonstrated antitumor activity in selected patients. However, whether peripheral blood could be used as an alternative minimally invasive source to identify lymphocytes targeting neoantigens in patients with GI cancer with relatively low mutation burden is unclear. We used a personalized high-throughput screening strategy to investigate whether PD-1 expression in peripheral blood could be used to identify CD8+ or CD4+ lymphocytes recognizing neoantigens identified by whole-exome sequencing in 7 patients with GI cancer.
View Article and Find Full Text PDFImmunotherapies can mediate regression of human tumors with high mutation rates, but responses are rarely observed in patients with common epithelial cancers. This raises the question of whether patients with these common cancers harbor T lymphocytes that recognize mutant proteins expressed by autologous tumors that may represent ideal targets for immunotherapy. Using high-throughput immunologic screening of mutant gene products identified via whole-exome sequencing, we identified neoantigen-reactive tumor-infiltrating lymphocytes (TIL) from 62 of 75 (83%) patients with common gastrointestinal cancers.
View Article and Find Full Text PDFAdoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILs) targeting neoantigens can mediate tumor regression in selected patients with metastatic epithelial cancer. However, effectively identifying and harnessing neoantigen-reactive T cells for patient treatment remains a challenge and it is unknown whether current methods to detect neoantigen-reactive T cells are missing potentially clinically relevant neoantigen reactivities. We thus investigated whether the detection of neoantigen-reactive TILs could be enhanced by enriching T cells that express PD-1 and/or T cell activation markers followed by microwell culturing to avoid overgrowth of nonreactive T cells.
View Article and Find Full Text PDFAdoptive transfer of T cells with engineered T-cell receptor (TCR) genes that target tumor-specific antigens can mediate cancer regression. Accumulating evidence suggests that the clinical success of many immunotherapies is mediated by T cells targeting mutated neoantigens unique to the patient. We hypothesized that the most frequent TCR clonotypes infiltrating the tumor were reactive against tumor antigens.
View Article and Find Full Text PDFImmunotherapy treatment of patients with metastatic cancer has assumed a prominent role in the clinic. Durable complete response rates of 20% to 25% are achieved in patients with metastatic melanoma following adoptive cell transfer of T cells derived from metastatic lesions, responses that appear in some patients to be mediated by T cells that predominantly recognize mutated antigens. Here, we provide a detailed analysis of the reactivity of T cells administered to a patient with metastatic melanoma who exhibited a complete response for over 3 years after treatment.
View Article and Find Full Text PDFNeoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system.
View Article and Find Full Text PDFDetection of lymphocytes that target tumor-specific mutant neoantigens--derived from products encoded by mutated genes in the tumor--is mostly limited to tumor-resident lymphocytes, but whether these lymphocytes often occur in the circulation is unclear. We recently reported that intratumoral expression of the programmed cell death 1 (PD-1) receptor can guide the identification of the patient-specific repertoire of tumor-reactive CD8(+) lymphocytes that reside in the tumor. In view of these findings, we investigated whether PD-1 expression on peripheral blood lymphocytes could be used as a biomarker to detect T cells that target neoantigens.
View Article and Find Full Text PDFAdoptively transferred tumor-infiltrating T lymphocytes (TILs) that mediate complete regression of metastatic melanoma have been shown to recognize mutated epitopes expressed by autologous tumors. Here, in an attempt to develop a strategy for facilitating the isolation, expansion, and study of mutated antigen-specific T cells, we performed whole-exome sequencing on matched tumor and normal DNA isolated from 8 patients with metastatic melanoma. Candidate mutated epitopes were identified using a peptide-MHC-binding algorithm, and these epitopes were synthesized and used to generate panels of MHC tetramers that were evaluated for binding to tumor digests and cultured TILs used for the treatment of patients.
View Article and Find Full Text PDFLimited evidence exists that humans mount a mutation-specific T cell response to epithelial cancers. We used a whole-exomic-sequencing-based approach to demonstrate that tumor-infiltrating lymphocytes (TIL) from a patient with metastatic cholangiocarcinoma contained CD4+ T helper 1 (T(H)1) cells recognizing a mutation in erbb2 interacting protein (ERBB2IP) expressed by the cancer. After adoptive transfer of TIL containing about 25% mutation-specific polyfunctional T(H)1 cells, the patient achieved a decrease in target lesions with prolonged stabilization of disease.
View Article and Find Full Text PDFCancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL.
View Article and Find Full Text PDFBackground: To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes.
Methods: We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols.
Results: TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor.
Purpose: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) can mediate regression of metastatic melanoma. However, many patients with cancer are ineligible for such treatment because their TIL do not expand sufficiently or because their tumors have lost expression of antigens and/or MHC molecules. Natural killer (NK) cells are large granular lymphocytes that lyse tumor cells in a non-MHC-restricted manner.
View Article and Find Full Text PDF