Publications by authors named "Maria R Servedio"

AbstractUnderstanding patterns of diversification necessarily requires accounting for both the generation and the persistence of species. Formal models of speciation genetics, however, focus on the generation of new species without explicitly considering the maintenance of biodiversity (e.g.

View Article and Find Full Text PDF

AbstractWhether natural selection leads to attachment in monogamous pair bonds has seldom been addressed. Operationally defining attachment as a behavioral modifier that decreases divorce probability with pair duration, we develop a model for the evolution of attachment. If divorce (the ending of a pair bond when both individuals survive to the next breeding season) is more likely to occur out of poor-quality reproductive opportunities (i.

View Article and Find Full Text PDF

Many influential mathematical models of sexual selection have stressed that mating preferences evolve due to correlations that build between mating preferences and preferred display traits-that is, through indirect selection. Nevertheless, there is a perception that indirect selection should generally be overwhelmed by direct selection, for example, in the form of search costs. Recent work by Fry has used quantitative genetic models to argue that in many cases, including when there are direct benefits (a fecundity advantage to mating with the preferred male), direct and indirect selection may be of similar magnitude.

View Article and Find Full Text PDF

Fear is a taxonomically widespread behavioral response that functions to keep individuals out of danger. Empirical research has demonstrated that a diverse set of strategies are used in order to acquire a fear response across animals. Animals often use a mixed strategy: fear is acquired both innately and through learning.

View Article and Find Full Text PDF

Speciation can be mediated by a variety of reproductive barriers, and the interaction among different barriers has often been shown to enhance overall reproductive isolation, a process referred to as "coupling." Here, we analyze a population genetics model to study the establishment of linkage disequilibrium (LD) among loci involved in multiple premating barriers, an aspect that has received little theoretical attention to date. We consider a simple genetic framework underlying two distinct premating barriers, each encoded by a preference locus and its associated mating trait locus.

View Article and Find Full Text PDF

Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects.

View Article and Find Full Text PDF

Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin , a free-living host species of an obligate brood parasite, the brown-headed cowbird .

View Article and Find Full Text PDF

Sexual selection by mate choice is a powerful force that can lead to evolutionary change, and models of why females choose particular mates are central to understanding its effects. Predominant mate choice theories assume preferences are determined solely by genetic inheritance, an assumption still lacking widespread support. Moreover, preferences often vary among individuals or populations, fail to correspond with conspicuous male traits, or change with context, patterns not predicted by dominant models.

View Article and Find Full Text PDF

Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened.

View Article and Find Full Text PDF

Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual's predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator-prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator-prey dynamics.

View Article and Find Full Text PDF

AbstractThe presence of same-sex sexual behavior across the animal kingdom is often viewed as unexpected. One explanation for its prevalence in some taxa is indiscriminate mating-a strategy wherein an individual does not attempt to determine the sex of its potential partner before attempting copulation. Indiscriminate mating has been argued to be the ancestral mode of sexual reproduction and can also be an optimal strategy given search costs of choosiness.

View Article and Find Full Text PDF

Upon the secondary contact of populations, speciation with gene flow is greatly facilitated when the same pleiotropic loci are both subject to divergent ecological selection and induce non-random mating, leading to loci with this fortuitous combination of functions being referred to as 'magic trait' loci. We use a population genetics model to examine whether 'pseudomagic trait' complexes, composed of physically linked loci fulfilling these two functions, are as efficient in promoting premating isolation as magic traits. We specifically measure the evolution of choosiness, which controls the strength of assortative mating.

View Article and Find Full Text PDF

Sexual selection has a rich history of mathematical models that consider why preferences favor one trait phenotype over another (for population genetic models) or what specific trait value is preferred (for quantitative genetic models). Less common is exploration of the evolution of choosiness or preference strength: i.e.

View Article and Find Full Text PDF

AbstractDespite widespread interest in the evolution and implications of monogamy across taxa, less attention-especially theoretical-has been paid toward understanding the evolution of divorce (ending a socially monogamous pairing to find a new partner). Here, we develop a model of the evolution of divorce by females in a heterogeneous environment, where females assess territory quality as a result of their breeding success. Divorce results in females leaving poor territories disproportionally more often than good territories, while death of a partner occurs independent of territory quality, giving an advantage to divorce.

View Article and Find Full Text PDF

Influential models of speciation by sexual selection posit either a single shared preference for a universal display, expressed only when males are locally adapted and hence in high condition, or that shared loci evolve population-specific alleles for displays and preferences. However, many closely related species instead show substantial differences across categorically different traits. We present a model of secondary contact whereby females maintain preferences for distinct displays that indicate both male condition and their match to distinct environments, fostering reproductive isolation among diverging species.

View Article and Find Full Text PDF

The strength of mate choice (choosiness) often varies with age, but theory to understand this variation is scarce. Additionally, theory has investigated the evolution of choosiness in speciation scenarios but has ignored that most organisms have overlapping generations. We investigate whether speciation can result in variation of choosiness with age, and whether such variation can in turn affect speciation.

View Article and Find Full Text PDF

Pollination requires a flower to remain open for long enough to allow for the arrival of pollinators. However, maintaining flowers costs energy and resources. Therefore, flower longevity, the length of time a flower remains viable, is critical for the outcome of plant reproduction.

View Article and Find Full Text PDF

If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints.

View Article and Find Full Text PDF

The widespread presence of same-sex sexual behaviour (SSB) has long been thought to pose an evolutionary conundrum, as participants in SSB suffer the cost of failing to reproduce after expending the time and energy to find a mate. The potential for SSB to occur as part of an optimal strategy has received less attention, although indiscriminate sexual behaviour may be the ancestral mode of sexual reproduction. Here, we build a simple model of sexual reproduction and create a theoretical framework for the evolution of indiscriminate sexual behaviour.

View Article and Find Full Text PDF

"Magic traits," in which the same trait is both under divergent ecological selection and forms the basis of assortative mating, have been sought after due to their supposed unique ability to promote divergence with gene flow. Here, we ask how unique magic traits are, by exploring whether a tightly linked complex of a locus under divergent selection and a locus that acts as a mating cue can mimic a magic trait in its divergence. We find that these "pseudomagic traits" can be very effective in promoting divergence; with tight linkage they are essentially as effective as a magic trait and with loose linkage, and even no linkage, divergence can still be enhanced.

View Article and Find Full Text PDF

Theoretical models often have fundamentally different goals than do empirical studies of the same topic. Models can test the logic of existing hypotheses, explore the plausibility of new hypotheses, provide expectations that can be tested with data, and address aspects of topics that are currently inaccessible empirically. Theoretical models are common in ecology and evolution and are generally well cited, but I show that many citations appearing in nontheoretical studies are general to topic and that a substantial proportion are incorrect.

View Article and Find Full Text PDF

Decades of theoretical work on the evolution of adaptive prezygotic isolation have led to an interesting finding-namely that stable partial reproductive isolation is a relatively common outcome. This conclusion is generally lost, however, in the desire to pinpoint when exactly speciation occurs. Here, we argue that the evolution of partial reproductive isolation is of great interest in its own right and matches empirical findings that ongoing hybridization is taxonomically widespread.

View Article and Find Full Text PDF

In many species that form pair bonds, males display to their mate after pair formation. These displays elevate the female's investment into the brood. This is a form of cooperation because without the display, female investment is reduced to levels that are suboptimal for both sexes.

View Article and Find Full Text PDF

Sexual imprinting-a phenomenon in which offspring learn parental traits and later use them as a model for their own mate preferences-can generate reproductive barriers between species. When the target of imprinting is a mating trait that differs among young lineages, imprinted preferences may contribute to behavioural isolation and facilitate speciation. However, in most models of speciation by sexual selection, divergent natural selection is also required; the latter acts to generate and maintain variation in the sexually selected trait or traits, and in the mating preferences that act upon them.

View Article and Find Full Text PDF

Sexual selection has long been acknowledged as an important evolutionary force, capable of shaping phenotypes ranging from fascinating and unusual displays to cryptic traits whose function is only uncovered by careful study. Yet, despite decades of research, reaching a consensus definition of the term 'sexual selection' has proved difficult. Here we explore why arriving at a unifying definition of sexual selection is so hard.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8ci7a50j1oh5n301fol8mqkrtrma2jq3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once