The excessive accumulation of chloride (Cl) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl, Na, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin () and the disease-resistant donor were performed with the aim to identify repeatable QTLs that regulate leaf Cl (and/or Na) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl was detected in chromosome 6 (), where 23 potential candidate genes coding for transporters were identified using the genome as reference.
View Article and Find Full Text PDFSalt tolerance is a target trait in plant science and tomato breeding programs. Wild tomato accessions have been often explored for this purpose. Since shoot Na/K is a key component of salt tolerance, RNAi-mediated knockdown isogenic lines obtained for alleles encoding both class I Na transporters HKT1;1 and HKT1;2 were used to investigate the silencing effects on the Na and K contents of the xylem sap, and source and sink organs of the scion, and their contribution to salt tolerance in all 16 rootstock/scion combinations of non-silenced and silenced lines, under two salinity treatments.
View Article and Find Full Text PDFWe analyzed the physiological impact of function loss on cheesmaniae alleles at the HKT1;1 and HKT1;2 loci in the roots and aerial parts of tomato plants in order to determine the relative contributions of each locus in the different tissues to plant Na/K homeostasis and subsequently to tomato salt tolerance. We generated different reciprocal rootstock/scion combinations with non-silenced, single RNAi-silenced lines for ScHKT1;1 and ScHKT1;2, as well as a silenced line at both loci from a near isogenic line (NIL14), homozygous for the Solanum cheesmaniae haplotype containing both HKT1 loci and subjected to salinity under natural greenhouse conditions. Our results show that salt treatment reduced vegetative growth and altered the Na/K ratio in leaves and flowers; negatively affecting fruit production, particularly in graft combinations containing single silenced ScHKT1;2- and double silenced ScHKT1;1/ScHKT1;2 lines when used as scion.
View Article and Find Full Text PDFGenes encoding HKT1-like Na transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S.
View Article and Find Full Text PDF