The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug.
View Article and Find Full Text PDFFluid imbibition-coupled laser interferometry (FICLI) is a technique in which the kinetics of a fluid infiltrating a nanoporous anodic alumina (NAA) membrane is monitored by the interference of a laser beam at the membrane top and bottom surfaces. Further processing of the measured data results in an estimate of the pore radius. In this work, we study the accuracy of FICLI in the detection of small changes in pore radius, and we evaluate the possibility of using such detection as a sensing paradigm.
View Article and Find Full Text PDFControlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells.
View Article and Find Full Text PDF