Background: Histone deacetylase inhibitors (HDACi) are promising anti-cancer drugs that could also be employed for urothelial carcinoma (UC) therapy. It is unclear, however, whether inhibition of all 11 zinc-dependent HDACs or of individual enzymes is more efficacious and specific. Here, we investigated the novel HDACi 19i (LMK235) with presumed preferential activity against class IIA HDAC4/5 in comparison to the pan-HDACi vorinostat (SAHA) and the HDAC4-specific HDACi TMP269 in UC cell lines with basal expression of HDAC4 and characterized two HDAC4-overexpressing UC cell lines.
View Article and Find Full Text PDFBackground: New efficient therapies for urothelial carcinoma (UC) are urgently required. Small-molecule drugs targeting chromatin regulators are reasonable candidates because these regulators are frequently mutated or deregulated in UC. Indeed, in previous work, Romidepsin, which targets class I histone deacetylases (HDAC), efficiently killed UC cells, but did not elicit canonical apoptosis and affected benign urothelial cells indiscriminately.
View Article and Find Full Text PDFMutations, dysregulation, and dysbalance of epigenetic regulators are especially frequent in urothelial carcinoma (UC) compared to other malignancies. Accordingly, targeting epigenetic regulators may provide a window of opportunity particularly in anticancer therapy of UC. In general, these epigenetic regulators comprise DNA methyltransferases and DNA demethylases (for DNA methylation), histone methyltransferases, and histone demethylases (for histone methylation) as well as acetyl transferases and histone deacetylases (for histone and non-histone acetylation).
View Article and Find Full Text PDFDisturbances in histone acetyltransferases (HATs) are common in cancers. In urothelial carcinoma (UC), p300 and CBP are often mutated, whereas the GNAT family HATs GCN5 and PCAF (General Control Nonderepressible 5, p300/CBP-Associated Factor) are often upregulated. Here, we explored the effects of specific siRNA-mediated knockdown of GCN5, PCAF or both in four UC cell lines (UCCs).
View Article and Find Full Text PDFHistone deacetylases (HDACs) influence diverse cellular processes and may contribute to tumor development and progression by multiple mechanisms. Class I HDACs are often overexpressed in cancers contributing to a genome-wide epigenetic state permitting increased proliferation, and diminished apoptosis and cell differentiation. Class IIA and IIB isoenzymes may likewise contribute to tumorigenesis as components of specific intranuclear repressor complexes or regulators of posttranslational protein modifications.
View Article and Find Full Text PDFBackground: More effective chemotherapies are urgently needed for bladder cancer, a major cause of morbidity and mortality worldwide. We therefore explored the efficacy of the combination of gemcitabine and AZD7762, a checkpoint kinase 1/2 (CHK1/2) inhibitor, for bladder cancer.
Methods: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in urothelial cancer cell lines and various non-malignant urothelial cells treated with gemcitabine and AZD7762.
Cell culture models of normal urothelial cells are important for studying differentiation, disease mechanisms and anticancer drug development. Beyond primary cultures with their limitations in lifespan, interindividual heterogeneity and supply, few conditionally immortalized cell lines with limited applicability due to partial transformation or impaired differentiation capacity are available. We describe characteristics of the new spontaneously immortalized cell line HBLAK derived from a primary culture of uroepithelial cells.
View Article and Find Full Text PDFBackground: Targeting of class I histone deacetylases (HDACs) exerts antineoplastic actions in various cancer types by modulation of transcription, upregulation of tumor suppressors, induction of cell cycle arrest, replication stress and promotion of apoptosis. Class I HDACs are often deregulated in urothelial cancer. 4SC-202, a novel oral benzamide type HDAC inhibitor (HDACi) specific for class I HDACs HDAC1, HDAC2 and HDAC3 and the histone demethylase LSD1, shows substantial anti-tumor activity in a broad range of cancer cell lines and xenograft tumor models.
View Article and Find Full Text PDF