Glycan-mediated molecular recognition events are essential for life. NMR is widely used to monitor glycan binding to lectins in solution using isolated glycans and lectins. In this context, we herein explore diverse NMR methodologies, from both the receptor and ligand perspectives, to monitor glycan-lectin interactions under experimental conditions mimicking the native milieu inside cells and on cell surface.
View Article and Find Full Text PDFGiven the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from . This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of and cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes.
View Article and Find Full Text PDFHuman sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation.
View Article and Find Full Text PDFThe interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly C-labelled trisaccharides at the sialic acid and galactose moieties. STD- H, C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue.
View Article and Find Full Text PDFThe sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer.
View Article and Find Full Text PDFProtein N-glycosylation stands out for its intrinsic and functionally related heterogeneity. Despite its biomedical interest, Glycoprofile analysis still remains a major scientific challenge. Here, we present an NMR-based strategy to delineate the N-glycan composition in intact glycoproteins and under physiological conditions.
View Article and Find Full Text PDFInborn defects of cholesterol biosynthesis are metabolic disorders presenting with multi-organ and tissue anomalies. An autosomal recessive defect involving the demethylating enzyme C4-methyl sterol (SC4MOL) has been reported in only 4 patients so far. In infancy, all patients were affected by microcephaly, bilateral congenital cataracts, growth delay, psoriasiform dermatitis, immune dysfunction, and intellectual disability.
View Article and Find Full Text PDF