Publications by authors named "Maria Pia Felli"

Article Synopsis
  • T-cell acute lymphoblastic leukemia (T-ALL) is a serious blood cancer that often doesn't respond well to standard treatments and has high relapse rates, especially in adults.
  • Aberrant Notch signaling is a major factor in the development and treatment resistance of T-ALL, making it an important target for personalized medicine.
  • New strategies involving Notch inhibitors and BH3 mimetics are being explored for more effective treatments, highlighting their potential combined effectiveness based on recent findings.
View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies.

View Article and Find Full Text PDF

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disorder that may progress to kidney failure, accounting for 5-10% of all patients with end-stage kidney disease (ESKD). Clinical data, as well as molecular genetics and advanced imaging techniques have provided surrogate prognostic biomarkers to predict rapid decline in kidney function, nonetheless enhanced tools for assessing prognosis for ADPKD are still needed. The aim of this study was to analyze specific microRNAs involved in the pathogenesis of ADPKD and in the development of renal fibrosis, evaluating their potential role as predictors of renal function loss.

View Article and Find Full Text PDF

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear.

View Article and Find Full Text PDF

BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types.

View Article and Find Full Text PDF

Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging.

View Article and Find Full Text PDF

Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL.

View Article and Find Full Text PDF

Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence.

View Article and Find Full Text PDF

Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways.

View Article and Find Full Text PDF

Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/β-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways.

View Article and Find Full Text PDF

Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling.

View Article and Find Full Text PDF

Colorectal cancer is characterized by well-known genetic defects and approximately 50% of cases harbor oncogenic mutations. Increased expression of Notch ligand Jagged1 occurs in several human malignancies, including colorectal cancer, and correlates with cancer progression, poor prognosis, and recurrence. Herein, we demonstrated that Jagged1 was constitutively processed in colorectal cancer tumors with mutant Kras, which ultimately triggered intrinsic reverse signaling via its nuclear-targeted intracellular domain Jag1-ICD.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer caused by the deregulation of key T-cell developmental pathways, including Notch signaling. Aberrant Notch signaling in T-ALL occurs by gain-of-function mutations and by overexpression. Although is assumed as a Notch1 target, machinery driving its transcription in T-ALL is undefined in leukemia subsets lacking Notch1 activation.

View Article and Find Full Text PDF

The Notch signaling pathway plays multiple roles in driving T-cell fate decisions, proliferation, and aberrant growth. NF-κB is a cell-context key player interconnected with Notch signaling either in physiological or in pathological conditions. This review focuses on how the multilayered crosstalk between different Notches and NF-κB subunits may converge on Foxp3 gene regulation and orchestrate CD4 regulatory T (Treg) cell function, particularly in a tumor microenvironment.

View Article and Find Full Text PDF

Notch hyperactivation dominates T-cell acute lymphoblastic leukemia development, but the mechanisms underlying "pre-leukemic" cell dissemination are still unclear. Here we describe how deregulated Notch3 signaling enhances CXCR4 cell-surface expression and migratory ability of CD4CD8 thymocytes, possibly contributing to "pre-leukemic" cell propagation, early in disease progression. In transgenic mice overexpressing the constitutively active Notch3 intracellular domain, we detect the progressive increase in circulating blood and bone marrow of CD4CD8 cells, characterized by high and combined surface expression of Notch3 and CXCR4.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator.

View Article and Find Full Text PDF

The Notch pathway represents a conserved signal transduction machinery that is straightforward and based on a few elements (ligands, receptors, transducers). However, the existence of multiple control levels of the Notch signaling final outcome makes it strictly context dependent and dose dependent. The function of Notch as a regulator of cell development and differentiation, as well as the aberrant consequences of its modulation, either positive or negative, is well established.

View Article and Find Full Text PDF

Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4) overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα). In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293) to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity.

View Article and Find Full Text PDF

Deregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL). Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene.

View Article and Find Full Text PDF