Publications by authors named "Maria Paula Macedo"

Background: In MASLD (formerly called NAFLD) mouse models, oversupply of dietary fat and sugar is more lipogenic than either nutrient alone. Fatty acids suppress de novo lipogenesis (DNL) from sugars, while DNL inhibits fatty acid oxidation. How such factors interact to impact hepatic triglyceride levels are incompletely understood.

View Article and Find Full Text PDF

Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model.

View Article and Find Full Text PDF

Distinct plasma microRNA profiles associate with different disease features and could be used to personalize diagnostics. Elevated plasma microRNA hsa-miR-193b-3p has been reported in patients with pre-diabetes where early asymptomatic liver dysmetabolism plays a crucial role. In this study, we propose the hypothesis that elevated plasma hsa-miR-193b-3p conditions hepatocyte metabolic functions contributing to fatty liver disease.

View Article and Find Full Text PDF

Background: Diabetes is a heterogeneous and multifactorial disease. However, glycemia and glycated hemoglobin have been the focus of diabetes diagnosis and management for the last decades. As diabetes management goes far beyond glucose control, it has become clear that assessment of other biochemical parameters gives a much wider view of the metabolic state of each individual, enabling a precision medicine approach.

View Article and Find Full Text PDF

Background: Type 2 Diabetes (T2D) diagnosis is based solely on glycaemia, even though it is an endpoint of numerous dysmetabolic pathways. Type 2 Diabetes complexity is challenging in a real-world scenario; thus, dissecting T2D heterogeneity is a priority. Cluster analysis, which identifies natural clusters within multidimensional data based on similarity measures, poses a promising tool to unravel Diabetes complexity.

View Article and Find Full Text PDF

Objective: In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) diagnosis without using invasive methods is extremely challenging, highlighting the need for simple indexes for this end. Recently, the fibrotic nonalcoholic steatohepatitis index (FNI) was developed and proposed as an affordable non-invasive score calculated with aspartate aminotransferase, high-density lipoprotein cholesterol and haemoglobin A1c. Herein, and given the link between NAFLD and diabetes, we aimed at validating FNI in a population with type 2 diabetes (T2D), also considering diabetes duration and glycaemic severity.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate communication in physiological and pathological conditions. In the pathogenesis of type 2 diabetes, inter-organ communication plays an important role in its progress and metabolic surgery leads to its remission. Moreover, gut dysbiosis is emerging as a diabetogenic factor.

View Article and Find Full Text PDF

Aims/hypothesis: Imbalances in glucose metabolism are hallmarks of clinically silent prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) representing dysmetabolism trajectories leading to type 2 diabetes. CD26/dipeptidyl peptidase 4 (DPP4) is a clinically proven molecular target of diabetes-controlling drugs but the DPP4 gene control of dysglycaemia is not proven.

Methods: We dissected the genetic control of post-OGTT and insulin release responses by the DPP4 gene in a Portuguese population-based cohort of mainly European ancestry that comprised individuals with normoglycaemia and prediabetes, and in mouse experimental models of Dpp4 deficiency and hyperenergetic diet.

View Article and Find Full Text PDF

Liver disease accounts for millions of deaths worldwide annually being a major cause of global morbidity. Hepatotoxic insults elicit a multilayered response involving tissue damage, inflammation, scar formation, and tissue regeneration. Liver cell populations act coordinately to maintain tissue homeostasis and providing a barrier to external aggressors.

View Article and Find Full Text PDF

Macrophages are pivotal in mounting liver inflammatory and tissue repair responses upon hepatic injury, showing remarkable functional plasticity. The molecular mechanisms determining macrophage transition from inflammatory to restorative phenotypes in the damaged liver remain unclear. Using mouse models of acute (APAP) and chronic (CCl4) drug-induced hepatotoxic injury we show that the immune receptor Trem-2 controls phenotypic shifts of liver macrophages and impacts endothelial cell differentiation during tissue recovery.

View Article and Find Full Text PDF

Kidney function in metabolism is often underestimated. Although the word "clearance" is associated to "degradation", at nephron level, proper balance between what is truly degraded and what is redirected to utilization is crucial for the maintenance of electrolytic and acid-basic balance and energy conservation. Insulin is probably one of the best examples of how diverse and heterogeneous kidney response can be.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH).

View Article and Find Full Text PDF

Background: It is estimated that around 70% of Type 2 Diabetes Mellitus patients (T2DM) have Non-Alcoholic Fatty Liver Disease (NAFLD). Awareness and education are amongst the major shortcomings of the public health response to the increasing threat of NAFLD. Characterizing the specific NAFLD-related information needs of particular high-risk metabolic communities, for instance, T2DM patients, might aid in the development of evidence-based health promotion strategies, ultimately promoting NAFLD-awareness, treatment adherence and therapeutic success rates.

View Article and Find Full Text PDF

Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification.

View Article and Find Full Text PDF

Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade.

View Article and Find Full Text PDF

Deuterated water (HO) is widely used for measuring de novo lipogenesis (DNL). H is incorporated into fatty acids via exchange between body water and the hydrogens of acetyl-CoA, malonyl-CoA, and NADPH. Previous studies concluded that these exchanges are incomplete; therefore, fatty acid H enrichment requires correcting.

View Article and Find Full Text PDF

We are currently witnessing a paradigm shift from evidence-based medicine to precision medicine, which has been made possible by the enormous development of technology. The advances in data mining algorithms will allow us to integrate trans-omics with clinical data, contributing to our understanding of pathological mechanisms and massively impacting on the clinical sciences. Cluster analysis is one of the main data mining techniques and allows for the exploration of data patterns that the human mind cannot capture.

View Article and Find Full Text PDF

The de novo synthesis of triglyceride (TG) fatty acids (FA) and glycerol can be measured with stable isotope tracers. However, these methods typically do not inform the contribution of a given substrate to specific pathways on these synthetic processes. We integrated deuterated water (HO) measurement of de novo lipogenesis (DNL) and glycerol-3-phosphate (GLY) synthesis from all substrates with a C nuclear magnetic resonance (NMR) method that quantifies TG FA and glycerol enrichment from a specific [U-C]precursor.

View Article and Find Full Text PDF

Metabolic disorders are characterized by an overall state of inflammation and oxidative stress, which highlight the importance of a functional antioxidant system and normal activity of some endogenous enzymes, namely paraoxonase-1 (PON1). PON1 is an antioxidant and anti-inflammatory glycoprotein from the paraoxonases family. It is mainly expressed in the liver and secreted to the bloodstream, where it binds to HDL.

View Article and Find Full Text PDF

Background: The recent growing evidence that the proximal tubule underlies the early pathogenesis of diabetic kidney disease (DKD) is unveiling novel and promising perspectives. This pathophysiological concept links tubulointerstitial oxidative stress, inflammation, hypoxia, and fibrosis with the progression of DKD. In this new angle for DKD, the prevailing molecular mechanisms on proximal tubular cells emerge as an innovative opportunity for prevention and management of DKD as well as to improve diabetic dysmetabolism.

View Article and Find Full Text PDF

Obesity is a major risk factor for developing nonalcoholic fatty liver disease (NAFLD). NAFLD is the most common form of chronic liver disease and is closely associated with insulin resistance, ultimately leading to cirrhosis and hepatocellular carcinoma. However, knowledge of the intracellular regulators of obesity-linked fatty liver disease remains incomplete.

View Article and Find Full Text PDF

Dipeptidyl peptidase-4 (DPP-4 or clusters of differentiation [CD]26) is a multifunctional molecule with established roles in metabolism. Pharmacologic inhibition of DPP-4 is widely used to improve glycemic control through regulation of the incretin effect. Colaterally, CD26/DPP-4 inhibition appears to be beneficial in many inflammatory conditions, namely in delaying progression of liver pathology.

View Article and Find Full Text PDF