The substantial increase in the presence of greenhouse gases (GHGs) in the atmosphere has led to the development of several sampling techniques to quantify and characterize the sources of high global warming potential gas emissions. In this context, we developed a new method to estimate the time-averaged concentration of atmospheric methane that employs a long hose to collect a sample of gas by diffusion through one of its ends. We performed numerical simulations to illustrate the basis of our method and to determine the numerical factors required to estimate the time-averaged concentration of methane.
View Article and Find Full Text PDFThe reuse of effluents from intensive dairy farms combined with localized irrigation techniques (fertigation) has become a promising alternative to increase crop productivity while reducing the environmental impact of waste accumulation and industrial fertilizers production. Currently, the reuse of dairy effluents through fertigation by subsurface drip irrigation (SDI) systems is of vital importance for arid regions but it has been poorly studied. The present study aimed to assess the greenhouse gas (GHG) emissions, soil properties, and crop yield of a maize crop fertigated with either treated dairy effluent or dissolved granulated urea applied through an SDI system at a normalized N application rate of 200 kg N ha.
View Article and Find Full Text PDF