Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A).
View Article and Find Full Text PDFBovine respiratory syncytial virus (BRSV) affects both beef and dairy cattle, reaching morbidity and mortality rates of 60-80% and 20%, respectively. The aim of this study was to obtain a recombinant MVA expressing the BRSV F protein (MVA-F) as a vaccine against BRSV and to evaluate the immune response induced by MVA-F after systemic immunization in homologous and heterologous vaccination (MVA-F alone or combined with a subunit vaccine), and after intranasal immunization of mice. MVA-F administered by intraperitoneal route in a homologous scheme elicited levels of neutralizing antibodies similar to those obtained with inactivated BRSV as well as better levels of IFN-γ secretion.
View Article and Find Full Text PDFModified vaccinia Ankara virus (MVA) is extensively used as a vaccine vector. We have previously observed that MVAΔ008, an MVA lacking the gene that codes for interleukin-18 binding protein, significantly increases CD8+ and CD4+ T-cell responses to vaccinia virus (VACV) epitopes and recombinant HIV antigens. However, the efficacy of this vector against pathogens or tumor cells remains unclear.
View Article and Find Full Text PDF() infection is one of the leading causes of death worldwide. The Modified Vaccinia Ankara (MVA) vaccine vector expressing the mycobacterial antigen 85A (MVA85A) was demonstrated to be safe, although it did not improve BCG efficacy, denoting the need to search for improved tuberculosis vaccines. In this work, we investigated the effect of IL-12 DNA -as an adjuvant- on an Ag85A DNA prime/MVA85A boost vaccination regimen.
View Article and Find Full Text PDFThe baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, although it also has been used as display vector for vaccine development. In this work, we evaluated the effectiveness of repetitive doses of AcMNPV-based vectors on the cytotoxic immune response specific to the capsid-displayed heterologous antigen ovalbumin (OVA). Our results demonstrate that baculovirus vectors induce a boosting effect in the cytotoxic immune response to OVA, making possible to recover the levels obtained in the primary response.
View Article and Find Full Text PDFCanarypox viruses (CNPV) are excellent candidates to develop recombinant vector vaccines due to both their capability to induce protective immune responses and their incompetence to replicate in mammalian cells (safety profile). In addition, CNPV and the derived recombinants can be manipulated under biosafety level 1 conditions. There is no commercially available system to obtain recombinant CNPV; however, the methodology and tools required to develop recombinant vaccinia virus (VV), prototype of the Poxviridae family, can be easily adapted.
View Article and Find Full Text PDFViral Immunol
January 2018
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge.
View Article and Find Full Text PDFViruses
May 2016
In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes.
View Article and Find Full Text PDFA recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure.
View Article and Find Full Text PDFBackground: Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L).
View Article and Find Full Text PDFBovine herpesvirus-1 (BoHV-1) infection is distributed worldwide and the development of new tools to fight against this pathogen has become extremely important. In this work a recombinant modified vaccinia virus Ankara (MVA) vector expressing the secreted version of glycoprotein D, MVA-gDs, was obtained and evaluated as a candidate vaccine. First, the correct expression, antigenicity, and N-glycosylation of glycoprotein D were confirmed by molecular techniques.
View Article and Find Full Text PDFThe US3 protein is a unique protein kinase only present in the Alphaherpesvirinae subfamily of the herpesviruses. Studies performed with several alphaherpesviruses demonstrated that the US3 protein is involved in cytoskeleton modifications during viral infection and displays anti-apoptotic activity. However, the US3 protein of BoHV-5 has not been studied up to now.
View Article and Find Full Text PDF