Publications by authors named "Maria Paula Cornejo"

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of the ghrelin receptor (GHSR) in feeding behaviors and diet-induced obesity (DIO) by comparing global GHSR-KO and wild-type (WT) rats on high-fat and regular diets over 12 months.
  • Findings reveal that GHSR gene deletion protects male rats from DIO, decreases their food intake on high-fat diets, and enhances thermogenesis and brain glucose uptake, while these effects were not observed in female rats.
  • The use of a GHSR inverse agonist reduced food intake induced by ghrelin in males and lower binge-eating in both sexes, indicating GHSR as a potential target for obesity treatments.
View Article and Find Full Text PDF

The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity.

View Article and Find Full Text PDF

The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that regulates essential physiological functions. In particular, activation of GHSR in response to its endogenous agonist ghrelin promotes food intake and blood glucose increase. Therefore, compounds aimed at blocking GHSR signaling constitute potential options against obesity-related metabolic disorders.

View Article and Find Full Text PDF

Aims: Angiotensin-converting enzyme 2 (ACE2) is a key regulator of the renin-angiotensin system (RAS) recently identified as the membrane receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we aim to study whether two receptors from RAS, the angiotensin receptor type 1 (AT1R) and the bradykinin 2 receptor (B2R) modulate ACE2 internalization induced by a recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein. Also, we investigated the impact of ACE2 coexpression on AT1R and B2R functionality.

View Article and Find Full Text PDF

Ghrelin is a stomach-derived peptide hormone with salient roles in the regulation of energy balance and metabolism. Notably, ghrelin is recognized as the most powerful known circulating orexigenic hormone. Here, we systematically investigated the effects of ghrelin on energy homeostasis and found that ghrelin primarily induces a biphasic effect on food intake that has indirect consequences on energy expenditure and nutrient partitioning.

View Article and Find Full Text PDF

Growth hormone secretagogue receptor (GHSR), the receptor for ghrelin, is expressed in key brain nuclei that regulate food intake. The dopamine (DA) pathways have long been recognized to play key roles mediating GHSR effects on feeding behaviors. Here, we aimed to determine the role of GHSR in DA neurons controlling appetitive and consummatory behaviors towards high fat (HF) diet.

View Article and Find Full Text PDF

Objective: Binding of ghrelin to its receptor, growth hormone secretagogue receptor (GHSR), stimulates GH release, induces eating, and increases blood glucose. These processes may also be influenced by constitutive (ghrelin-independent) GHSR activity, as suggested by findings in short people with naturally occurring GHSR-A204E mutations and reduced food intake and blood glucose in rodents administered GHSR inverse agonists, both of which impair constitutive GHSR activity. In this study, we aimed to more fully determine the physiologic relevance of constitutive GHSR activity.

View Article and Find Full Text PDF
Article Synopsis
  • The growth hormone secretagogue receptor (GHSR) is mainly found in the brain and interacts with ghrelin and LEAP2, affecting food-related behaviors like binge eating.
  • Research showed that mice lacking GHSR consumed less high-fat food than normal mice during binge eating tests, indicating GHSR's role in binge-like eating.
  • Further experiments demonstrated that interfering with GHSR's constant activity, rather than ghrelin levels, reduces binge-like high-fat food intake, highlighting the receptor's significance in appetite regulation.
View Article and Find Full Text PDF

Ghrelin is a stomach-derived hormone that regulates rewarding behaviors and reinforcement by acting on the ventral tegmental area (VTA). The VTA is a complex midbrain structure mainly comprised of dopamine (DA) and gamma-aminobutiric acid (GABA) neurons that are distributed in several VTA sub-nuclei. Here, we investigated the neuroanatomical distribution and chemical phenotype of ghrelin-responsive neurons within the VTA.

View Article and Find Full Text PDF

Ghrelin is a stomach-derived hormone that regulates a variety of biological functions such as food intake, gastrointestinal function and blood glucose metabolism, among others. Ghrelin acts via the growth hormone secretagogue receptor (GHSR), a G-protein-coupled receptor located in key brain areas that mediate specific actions of the hormone. GHSR is highly expressed in the nucleus of the solitary tract (NTS), which is located in the medulla oblongata and controls essential functions, including orofacial, autonomic, neuroendocrine and behavioral responses.

View Article and Find Full Text PDF