Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family.
View Article and Find Full Text PDFThe response of fifty-four Lotus japonicus ecotypes, and of six selected ecotypes was investigated under alkaline conditions. Sensitive, but not tolerant ecotypes, showed interveinal chlorosis under all alkalinity conditions and high mortality under extreme alkalinity. Interveinal chlorosis was associated with Fe deficiency, as a reduced Fe shoot content was observed in all sensitive ecotypes.
View Article and Find Full Text PDFInoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P.
View Article and Find Full Text PDFThe current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L.
View Article and Find Full Text PDF