Chlorhexidine gluconate (CHG)-containing dressings are recommended to prevent central line associated bloodstream infections (CLABSIs) and other catheter-related infections. This study compared the effect of 2 CHG dressings on CLABSI, cost of care, and contact dermatitis. A retrospective analysis was conducted using the Premier Healthcare Database of hospitalized patients (n = 53 149) with central venous catheters (CVCs) and receiving either a transparent CHG gel dressing (n = 14 488) or an opaque CHG sponge dressing (n = 38 661) between January 2019 and September 2020.
View Article and Find Full Text PDFPurpose: Intravenous (IV) access point protectors, serving as passive disinfection devices and a cover between line accesses, are available to help reduce the risk of central line-associated bloodstream infections (CLABSIs). This low-maintenance disinfection solution is particularly valuable in situations with excessive workloads. This study examined the effect of a disinfecting cap for an IV access point on CLABSI rates, hospital length of stay, and cost of care in an inpatient setting during the coronavirus disease 2019 (COVID-19) pandemic.
View Article and Find Full Text PDFObjective: To model the cost-effectiveness impact of routine use of an antimicrobial chlorhexidine gluconate-containing securement dressing compared to non-antimicrobial transparent dressings for the protection of central vascular lines in intensive care unit patients.
Design: This study uses a novel health economic model to estimate the cost-effectiveness of using the chlorhexidine gluconate dressing versus transparent dressings in a French intensive care unit scenario. The 30-day time non-homogeneous markovian model comprises eight health states.
Background: Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA.
Results: To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR) for amplification of several dozens of gene-segments of 9 pathogenic species.
Up to now, blood culturing systems are the method of choice to diagnose bacteremia. However, definitive pathogen identification from positive blood cultures is a time-consuming procedure, requiring subculture and biochemical analysis. We developed a microarray for the identification of Staphylococcus aureus comprising PCR generated gene-segments, which can reduce the blood culture post-processing time to a single day.
View Article and Find Full Text PDFBloodstream infections are potentially life-threatening and require rapid identification and antibiotic susceptibility testing of the causative pathogen in order to facilitate specific antimicrobial therapy. We developed a prototype DNA microarray for the identification and characterization of three important bacteremia-causing species: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The array consisted of 120 species-specific gene probes 200 to 800 bp in length that were amplified from recombinant plasmids.
View Article and Find Full Text PDF