The cement sector is the second largest contributor to anthropogenic CO emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 / %), (ii) partial binder substitute (0 to 30 / %), and (iii) filler (5 / %).
View Article and Find Full Text PDFSlaker grits (SG) and biomass fly ash (BFA), two waste streams generated in the pulp and paper industry, are commonly disposed of in landfills, a practice with a high economic and environmental burden. In this work, their individual valorization as fillers in a commercial screed mortar formulation was evaluated in order to achieve a more sustainable management practice. The waste streams were characterized in terms of true density, particle size and morphology, and chemical and mineralogical composition.
View Article and Find Full Text PDFFly ash (FA) and exhausted bed sands (sands wastes) that are generated in biomass burners for energy production are two of the wastes generated in the pulp and paper industry. The worldwide production of FA biomass is estimated at 10 million tons/year and is expected to increase. In this context, the present work aims to develop one-part alkali-activated materials with biomass FA (0-100 wt.
View Article and Find Full Text PDFIn this work, alkali-activated fly ash-derived foams were produced at room temperature by direct foaming using aluminum powder. The 1 cm foams (cubes) were then evaluated as adsorbents to extract heavy metals from aqueous solutions. The foams' selectivity towards lead, cadmium, zinc, and copper ions was evaluated in single, binary, and multicomponent ionic solutions.
View Article and Find Full Text PDFOrdinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator.
View Article and Find Full Text PDFIn anaerobic digestion processes, pH has a vital role due to the direct impacts on the microbial community. An eco-friendly approach has been applied to control pH in anaerobic bioreactors, using waste-containing fly ash geopolymer spheres (GS) instead of powdered chemical compounds, to promote continuous alkalis leaching. The influence of GS porosity and concentration on the behavior of anaerobic sequential batch reactor treating cheese whey was evaluated.
View Article and Find Full Text PDFRed mud-based inorganic polymer spheres were used as alternative pH regulators and process enhancers in sequencing batch anaerobic reactors treating cheese whey. This byproduct tends to quickly acidify under anaerobic conditions, and the common route to control pH and ensure suitable conditions for methane production involves the use of commercial alkaline raw materials. The spheres were synthesized using significant amounts of hazardous and toxic waste, red mud (50 wt% of solid components), whose recycling is challenging.
View Article and Find Full Text PDFThis work reports a simple and safe, but powerful, route to depollute lead-containing aqueous solutions. Inorganic polymer foams (cm-size) were used as bulk-type adsorbents. The influence of the specimens' porosity and activator molarity on the foams' physical properties and on their lead extraction ability was studied.
View Article and Find Full Text PDFThe use of wastes, some of them hazards, as raw materials of ceramic pigments has been a way to diminish their environmental impact, to economically valorize them, and to face the depletion of virgin raw materials. In this work were prepared pigments having in their composition only industrial wastes: Cr/Ni electroplating (ES), and sludges from the cutting of natural stones-marble (MS) and granite (GS). The prepared mixtures were calcined at three temperatures (1100, 1200, and 1300 °C) and the obtained powders were characterized by XRD and UV-vis.
View Article and Find Full Text PDFAs nanomaterials are dominating 21st century's scene, multiple functionality in a single (nano)structure is becoming very appealing. Inspired by the Land of the Rising Sun, we designed a bifunctional (gas-sensor/photochromic) nanomaterial, made with TiO whose surface was simultaneously decorated with copper and silver (the Cu/Ag molar ratio being 3:1). This nanomaterial outperformed previous state-of-the-art TiO-based sensors for the detection of acetone, as well as the Cu-TiO-based photochromic material.
View Article and Find Full Text PDFIn this study, and for the first time, red mud (RM)-based geopolymer spheres were synthesised, with varying porosity and RM content, and then their use as pH regulators was evaluated. The aluminosilicate sources of these inorganic polymers were 100% waste-based, consisting of a mixture of RM and fly ash wastes. Geopolymer spheres containing up to 60 wt.
View Article and Find Full Text PDF