Mitochondrial fatty acid oxidation (FAO) is lower in placentas with pre-eclampsia. The aim of our study was to compare the placental mRNA expression of FAO enzymes in healthy pregnancies vs. different subgroups of pre-eclampsia according to the severity, time of onset, and the presence of intrauterine growth restriction (IUGR).
View Article and Find Full Text PDFPleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic β cells, as well as cells during the mammary gland development.
View Article and Find Full Text PDFAdolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ and inhibits its phosphatase activity, suggesting that RPTPβ/ζ may be involved in the regulation of ethanol effects.
View Article and Find Full Text PDFAntiangiogenic factors are currently used for the prediction of preeclampsia. The present study aimed to evaluate the relationship between antiangiogenic factors and lipid and carbohydrate metabolism in maternal plasma and placenta. We analyzed 56 pregnant women, 30 healthy and 26 with preeclampsia (including early and late onset).
View Article and Find Full Text PDFPleiotrophin (PTN) is a heparin-binding cytokine that is widely expressed during early development and increases in maternal circulation during pregnancy.Aged PTN-deficient mice exhibit insulin resistance, suggesting a role in metabolic control. The objectives of this study were to determine if PTN is expressed in mouse pancreatic β-cells in young vs.
View Article and Find Full Text PDFPleiotrophin is a pleiotropic cytokine that has been demonstrated to have a critical role in regulating energy metabolism, lipid turnover and plasticity of adipose tissue. Here, we hypothesize that this cytokine can be involved in regulatory processes of glucose and lipid homeostasis in the liver during pregnancy. Using 18-days pregnant Ptn-deficient mice, we evaluated the biochemical profile (circulating variables), tissue mRNA expression (qPCR) and protein levels of key enzymes and transcription factors involved in main metabolic pathways.
View Article and Find Full Text PDFThe study of placental lipid metabolism in uncomplicated pregnancies has not been developed in the literature to date. Its importance lies in expanding the knowledge of placental function to enable comparison with pathological pregnancies in future research. The aim of the present study was to compare the lipid metabolic activity and storage of the maternal and fetal sides of the placenta in healthy pregnancies.
View Article and Find Full Text PDFThe prevalence of obesity in women of childbearing age around the globe has dramatically increased in the last decades. Obesity is characterized by a low-state chronic inflammation, metabolism impairment and oxidative stress, among other pathological changes. Getting pregnant in this situation involves that gestation will occur in an unhealthy environment, that can potentially jeopardize both maternal and fetal health.
View Article and Find Full Text PDFAims/hypothesis: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis.
Methods: To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months).