Publications by authors named "Maria P Garcia Guerreiro"

Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families.

View Article and Find Full Text PDF

Interspecific hybridization is often seen as a genomic stress that may lead to new gene expression patterns and deregulation of transposable elements (TEs). The understanding of expression changes in hybrids compared with parental species is essential to disentangle their putative role in speciation processes. However, to date we ignore the detailed mechanisms involved in genomic deregulation in hybrids.

View Article and Find Full Text PDF

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D.

View Article and Find Full Text PDF

Almost all eukaryotes have transposable elements (TEs) against which they have developed defense mechanisms. In the Drosophila germline, the main transposable element (TE) regulation pathway is mediated by specific Piwi-interacting small RNAs (piRNAs). Nonetheless, for unknown reasons, TEs sometimes escape cellular control during interspecific hybridization processes.

View Article and Find Full Text PDF

Background: Drosophila subobscura exhibits a rich inversion polymorphism, with some adaptive inversions showing repeatable spatiotemporal patterns in frequencies related to temperature. Previous studies reported increased basal HSP70 protein levels in homokaryotypic strains for a warm-climate arrangement compared to a cold-climate one. These findings do not match the similar hsp70 genomic organization between arrangements, where gene expression levels are expected to be similar.

View Article and Find Full Text PDF

Heat-shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that "warm-climate" inversion O exhibits non-HS levels of Hsp70 protein like those of "cold-climate" O after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including O , O , O and O , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche.

View Article and Find Full Text PDF

Interspecific hybridization is a genomic stress condition that leads to the activation of transposable elements (TEs) in both animals and plants. In hybrids between Drosophila buzzatii and Drosophila koepferae, mobilization of at least 28 TEs has been described. However, the molecular mechanisms underlying this TE release remain poorly understood.

View Article and Find Full Text PDF

Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants.

View Article and Find Full Text PDF

Transposable elements (TEs), repeated mobile sequences, are ubiquitous in the eukaryotic kingdom. Their mobilizing capacity confers on them a high mutagenic potential, which must be strongly regulated to guarantee genome stability. In the Drosophila germline, a small RNA-mediated silencing system, the piRNA (Piwi-interacting RNA) pathway, is the main responsible TE regulating mechanism, but some stressful conditions can destabilize it.

View Article and Find Full Text PDF

Hybridization between different genomes is a source of genomic instability, sometimes associated with transposable element (TE) mobilization. Previous work showed that hybridization between the species Drosophila buzzatii and Drosophila koepferae induced mobilization of different (TEs), the Osvaldo retrotransposon being the most unstable. However, we ignore the mechanisms involved in this transposition release in interspecific hybrids.

View Article and Find Full Text PDF

Hybridization between species is a genomic instability factor involved in increasing mutation rate and new chromosomal rearrangements. Evidence of a relationship between interspecific hybridization and transposable element mobilization has been reported in different organisms, but most studies are usually performed with particular TEs and do not discuss the real effect of hybridization on the whole genome. We have therefore studied whole genome instability of Drosophila interspecific hybrids, looking for the presence of new AFLP markers in hybrids.

View Article and Find Full Text PDF

Background: Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms.

View Article and Find Full Text PDF

Previous work on transposable element distribution in colonizing populations of Drosophila buzzatii revealed a high frequency of occupancy in several chromosomal sites. Two explanatory hypotheses were advanced: the founder hypothesis, by which founder genetic drift was responsible, and the unstable hypothesis that assigns this unusual distribution to bursts of transposition toward some chromosomal sites. Here, we study the molecular structure of three euchromatic Osvaldo clones isolated from sites occupied at high (A4 and B9) and low frequency (B4) in colonizing populations, to test these hypotheses.

View Article and Find Full Text PDF