Publications by authors named "Maria P Filippone"

Many natural compounds can activate the plant immunity, and for this reason, they have attracted special interest in crop disease management. Previously, we isolated from strawberry leaves an ellagitannin (HeT), which elicits plant defense responses. In this research, we investigated bioactive compounds from field-collected strawberry leaves capable of inducing defense responses in against a bacterial pathogen.

View Article and Find Full Text PDF

An increasing interest in the development of products of natural origin for crop disease and pest control has emerged in the last decade. Here we introduce a new family of strawberry acyl glycosides (SAGs) formed by a trisaccharide (GalNAc-GalNAc-Glc) and a monounsaturated fatty acid of 6 to 12 carbon atoms linked to the glucose unit. Application of SAGs to Arabidopsis thaliana (hereafter Arabidopsis) plants triggered a transient oxidative burst, callose deposition and defense gene expression, accompanied by increased protection against two phytopathogens, Pseudomonas viridiflava and Botrytis cinerea.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a widespread class of endogenous noncoding RNAs and they have been studied in the past few years, implying important biological functions in all kingdoms of life. Recently, circRNAs have been identified in many plant species, including cereal crops, showing differential expression during stress response and developmental programs, which suggests their role in these process. In the following years, it is expected that insights into the functional roles of circRNAs can be used by cereal scientists and molecular breeders with the aim to develop new strategies for crop improvement.

View Article and Find Full Text PDF

Developing disease resistance is one of the most important components of any plant breeding program. Citrus traditional breeding methods (bud sport selection, crossbreeding, and other breeding channels) are a laborious task and often hampered by long juvenility, a high degree of heterozygosity, polyembryony, self-incompatibility, and abortion of reproductive organs. An interesting alternative to the classical breeding approach is the use of genetic transformation, which provides the means for adding a single agronomic trait to a plant without otherwise altering its phenotype.

View Article and Find Full Text PDF

In this work, we present a novel biostimulant for sustainable crop disease management, PSP1, based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen . Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a virulent strain of . Fermentation batches were shown to reduce anthracnose development by 30-60% as compared to infected non-treated plants.

View Article and Find Full Text PDF

Plant secondary metabolism produces a variety of tannins that have a wide range of biological activities, including activation of plant defenses and antimicrobial, anti-inflammatory and antitumoral effects. The ellagitannin HeT (1--galloyl-2,3;4,6-bis-hexahydroxydiphenoyl-β-d-glucopyranose) from strawberry leaves elicits a strong plant defense response, and exhibits antimicrobial activity associated to the inhibition of the oxygen consumption, but its mechanism of action is unknown. In this paper we investigate the influence of HeT on bacterial cell membrane integrity and its effect on respiration.

View Article and Find Full Text PDF

HeT (1-0-galloyl-2,3; 4,6-bis-hexahydroxydiphenoyl-β-D-glucopyranose) is a penta-esterified ellagitannin obtained from strawberry leaves. Previous studies have shown that foliar application of HeT prior to inoculation with a virulent pathogen increases the resistance toward Colletotrichum acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants.

View Article and Find Full Text PDF

Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp.

View Article and Find Full Text PDF

Background: Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important.

View Article and Find Full Text PDF

Citrus is an economically important fruit crop that is severely afflicted by Asiatic citrus bacterial canker (CBC), a disease caused by the phytopathogen Xanthomonas citri subsp. citri (X. citri).

View Article and Find Full Text PDF

In an incompatible interaction between Colletotrichum fragariae and strawberry plants, the accumulation of phenolic compounds in plant leaves was observed. A particularly abundant penta-esterified ellagitannin that accumulated in response to pathogen attack was identified as 1-0-galloyl-2,3;4,6-bis-hexahydroxydiphenoyl-β-d-glucopyranose (HeT) by mass spectroscopy and nuclear magnetic resonance. Foliar application of purified HeT prior to inoculation with a virulent pathogen was shown to increase resistance toward C.

View Article and Find Full Text PDF