Publications by authors named "Maria P D Gremiao"

: This study evaluated how the relative proportion of chitosan (CS) to the polyanions alginate (ALG) and hydroxypropyl-methylcellulose phthalate (HP) affects the colloidal properties of mesalazine (MSZ) nanosuspensions as a strategy to produce particles with specific characteristics. : Nanosuspensions were prepared using a bottom-up approach based on acid-base reactions and were modified with CS in a binary mixture with ALG or a ternary mixture with ALG and HP. The particle size, polydispersity index (PDI), zeta potential, morphology, and drug association efficiency were analyzed.

View Article and Find Full Text PDF

The poor prognosis of colorectal cancer (CRC) is mainly associated with the highly invasive nature, delayed diagnosis, multidrug-resistant cells, tumor recurrence, and metastasis. Targeted therapies offer a promising means to enhance drug accumulation at the tumor site with the aid of cell-targeting ligands. Herein, chitosan-based multifunctional nanoparticles, conjugated with methotrexate (MTX) by covalent bonds, were designed for targeted delivery of 5-fluorouracil (5-FU) to improve CRC therapy.

View Article and Find Full Text PDF

Drug repurposing, also known as drug repositioning, involves identifying new applications for drugs whose effects in a disease are already established. Doxycycline, a broad-spectrum antibiotic belonging to the tetracycline class, has demonstrated potential activity against neurodegenerative diseases like Alzheimer's and Parkinson's. However, despite its promise, the repurposed use of doxycycline encounters challenges in reaching the brain in adequate concentrations to exert its effects.

View Article and Find Full Text PDF

Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.

View Article and Find Full Text PDF

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug.

View Article and Find Full Text PDF

Background: The successful use of semiochemicals to attract insects to traps is based on research on the most suitable compounds and their release profiles over time. Based on the group's promising results, matrices with a more adequate release profile and more eco-friendly properties for the release of 1-hexanol were developed. To use a more suitable prototype in the field, the most promising systems were added to a capsule and evaluated in a wind tunnel.

View Article and Find Full Text PDF

This study reports the fundamental understanding of mucus-modulatory strategies combining charged biopolymers with distinct molecular weights and surface charges. Here, key biophysical evidence supports that low-molecular-weight (Mw) polycation chitosan oligosaccharides (COSs) and high-Mw polyanion dextran sulfate (DS) exhibit distinct thermodynamic signatures upon interaction with mucin (MUC), the main protein of mucus. While the COS → MUC microcalorimetric titrations released ~14 kcal/mol and ~60 kcal/mol, the DS → MUC titrations released ~1200 and ~1450 kcal/mol at pH of 4.

View Article and Find Full Text PDF

Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, β-, and γ-cyclodextrins, each with its own particularities.

View Article and Find Full Text PDF
Article Synopsis
  • * Tests showed that these formulations maintain desirable properties like pseudoplastic behavior, meaning they can flow easily while remaining stable, making them suitable for nasal delivery.
  • * The study found that the liposomal formulations improved insulin retention compared to traditional methods, achieving better absorption and higher serum insulin levels, indicating their potential effectiveness for nasal insulin delivery.
View Article and Find Full Text PDF

Since 1966, rifampicin (RIF) has been considered one of the most potent drugs in the treatment of tuberculosis (TB), which is caused by infection with M. tuberculosis (Mtb). New nanostructured formulations for RIF delivery and alternative routes of administration have been studied as potential forms of treatment.

View Article and Find Full Text PDF

Zidovudine (AZT) has been widely used alone or in combination with other antiretroviral drugs for the treatment of human immunodeficiency virus. Its erratic oral bioavailability necessitates frequent administration of high doses, resulting in severe side effects. In this study, the design of mucoadhesive solid dispersions (SDs) based on chitosan (CS) and hypromellose phthalate (HP) was rationalized as a potential approach to modulate AZT physicochemical and pharmaceutical properties.

View Article and Find Full Text PDF

Nanostructured polyelectrolyte complexes (nano PECs) were obtained by polyelectrolyte complexation technique from chitosan (CS) and sodium alginate (SA). Different polymer proportions were tested, as well as the addition order and homogenization type, to assess the influence on the nano PECs characteristics. The spherical shape and nanometric scale of the systems were observed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Hyperproliferative skin diseases (HSD) are a group of diseases that include cancers, pre-cancerous lesions and diseases of unknown etiology that present different skin manifestations in terms of the degree and distribution of the injuries. Anti-proliferative agents used to treat these diseases are so diverse, including 5-aminolevulinic acid, 5-fluorouracil, imiquimod, methotrexate, paclitaxel, podophyllotoxin, realgar, and corticosteroids in general. These drugs usually have low aqueous solubility, which consequently decreases skin permeation.

View Article and Find Full Text PDF

Polyelectrolyte complexation is a technique based on interactions between polyelectrolytes of opposite charges driven by supramolecular interactions. Although many studies address the formation of polyelectrolyte complexes (PECs), few explore strategies and tools to select the best working conditions and are often based on empirical choices. This study evaluates the influence of pH, molecular weight, and polymeric proportion on the formation of PECs based on chitosan:dextran sulfate.

View Article and Find Full Text PDF

Mutations on the epidermal growth factor receptor (EGFR), induction of angiogenesis, and reprogramming cellular energetics are all biological features acquired by tumor cells during tumor development, and also known as the hallmarks of cancer. Targeted therapies that combine drugs that are capable of acting against such concepts are of great interest, since they can potentially improve the therapeutic efficacy of treatments of complex pathologies, such as glioblastoma (GBM). However, the anatomical location and biological behavior of this neoplasm imposes great challenges for targeted therapies.

View Article and Find Full Text PDF

Colon-targeted oral delivery of drugs remains as an appealing and promising approach for the treatment of prevalent intestinal diseases (ID), such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Notwithstanding, there are numerous challenges to effective drug delivery to the colon, which requires the design of advanced strategies. Micro- and nanoparticles have received great attention as colon-targeted delivery platforms due to their reduced size and structural composition that favors the accumulation and/or residence time of drugs at the site of action and/or absorption, contributing to localized therapy.

View Article and Find Full Text PDF

Polymer blends of gellan gum (GG)/retrograded starch(RS) and GG/pectin (P) were cross-linked with calcium, aluminum, or both to prepare mucoadhesive microparticles as oral carriers of drugs or nano systems. Cross-linking with different cations promoted different effects on each blend, which can potentially be explored as novel strategies for modulating physical-chemical and mucoadhesive properties of microparticles. Particles exhibited spherical shapes, diameters from 888 to 1764 µm, and span index values lower than 0.

View Article and Find Full Text PDF

Two samples of N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan (DPCat) with different average degrees of quaternization named as DPCat35 (DQ¯ = 35%) and DPCat80 (DQ¯ = 80%), were successfully synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) with O-palmitoyl chitosan (DPCh) derivative (DS¯ = 12%). Such amphiphilic derivatives of chitosan were fully water-soluble at 1.0 < pH < 12.

View Article and Find Full Text PDF

Nanostructured polyelectrolyte complexes (nano PECs) based on biopolymers are an important technological strategy to target drugs to the action and/or absorption site in a more effective way. In this work, computational studies were performed to predict the ionization, spatial arrangement and interaction energies of chitosan (CS), hyaluronic acid (HA), and hypromellose phthalate (HP), for the design of nano PEC carriers for methotrexate (MTX). The optimal pH range (5.

View Article and Find Full Text PDF

Metronidazole (MT) is an important drug available for infection treatment. However, in the past few years, this drug has presented effective reduction for infection control, one of the most important reasons is attributed to the reduction of retention time in the stomach environment. Mucoadhesive nanostructured polyelectrolyte complexes (nano PECs) based on chitosan (CS) and hypromellose phthalate (HP) were rationally developed using a full factorial design (2 × 2 × 3), for the incorporation of MT based on the enhancement of the antimicrobial potential against active , in the stomach.

View Article and Find Full Text PDF
Article Synopsis
  • Dexamethasone acetate (DEX) is an effective anti-inflammatory drug used for treating various inflammatory and autoimmune conditions, and it has been integrated into CETETH 20-based liquid crystalline systems to improve its delivery.
  • A High-Performance Liquid Chromatography (HPLC) method was developed and validated to measure the amount of DEX in these systems, utilizing specific conditions for accurate detection.
  • The HPLC method showed high accuracy (99.92%) and excellent precision, allowing for the effective evaluation of DEX incorporation in the new formulation, making it suitable for use in pharmaceutical labs globally.
View Article and Find Full Text PDF

The encapsulation of nanoparticles within microparticles designed for specific delivery to the colon is a relevant strategy to avoid premature degradation or release of nanoparticles during their passage through the stomach and upper gastrointestinal tract (GIT), allowing the targeted delivery of chemotherapeutics to the colon after oral administration. Here, we designed an oral multiparticulate system to achieve targeted release in the colon. In this sense, chitosan nanoparticles (CS NPs) encapsulated with 5-fluorouracil (5-FU) and incorporated into retrograded starch and pectin (RS/P) microparticles were developed and their in vivo distribution along the mouse GIT after oral administration was monitored using multispectral optical imaging.

View Article and Find Full Text PDF

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug.

View Article and Find Full Text PDF

Chitosan-based particles are widely proposed as biocompatible drug delivery systems with mucoadhesive and permeation enhancing properties. However, strategies on how to modulate the intended biological responses are still scarce. Considering that particle properties affect the biological outcome, the rational design of the synthesis variables should be proposed to engineer drug delivery systems with improved biological performance.

View Article and Find Full Text PDF

Vaginal infections represent a clear women health problem due to the several issues as high recurrence rate, drug resistence and emergence of persistent strains. However, achieving improvements in therapeutic efficacy by using conventional formulations intended to vaginal drug delivery remains as a challenge due to anatomy and physiology of the vagina, since the secretion and renewal of vaginal fluids contribute to the removal of the dosage form. Hydrogels have been widely exploited aiming to achieve drug delivery directly into vaginal mucosa for local therapy due to their attractive features as increased residence time of the drug at the action site and control of drug release rates.

View Article and Find Full Text PDF