Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson's disease cases and leads to late-onset Parkinson's disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF).
View Article and Find Full Text PDFA series of enantiopure alkoxide and thioalkoxide zirconium derivatives [Zr(ER)(κ-R,R-fbpza)] (1-6) (E = O, R = CHMe1, CHMeEt 2, CHSiMe3, 2,6-CHMe4, 4-BuPh 5; E = S, R = 4-BuPh 6) has been prepared for use as thermally stable and robust initiators in the ROP of rac-lactide. The compounds were prepared by alcoholysis or thioalcoholysis of the tris(amide) precursor [Zr(NMe)(κ-R,R-fbpza)] [R,R-fbpzaH = N-p-fluorophenyl-(1R)-1-[(1R)-6,6-dimethylbicyclo[3.1.
View Article and Find Full Text PDFBackground: Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins.
Results: Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion.
New enantiopure imines (1-9) with a chiral substrate to control the stereochemistry of a newly created stereogenic center have been synthesized by reaction of the commercially available (1R)-(-)-myrtenal and different primary amines. The diastereomerically enriched lithium-scorpionate compounds [Li(κ(3)-mobpza)(THF)] (10) (mobpza = N-p-methylphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.
View Article and Find Full Text PDF