Publications by authors named "Maria Orogo-Wenn"

Background And Purpose: Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice.

View Article and Find Full Text PDF

In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption.

View Article and Find Full Text PDF

Tight control of lung liquid (LL) regulation is vital for pulmonary function. The aim of this work was to determine whether PKC activation is involved in the physiological regulation of LL volume in a whole lung preparation. Rat lungs were perfused with a modified Ringer solution, and the lumen was filled with the same solution without glucose.

View Article and Find Full Text PDF

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells.

View Article and Find Full Text PDF