Background: The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011-2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L.
View Article and Find Full Text PDFPhlebotomine sand flies (Diptera, Psychodidae) are vectors of multiple Leishmania species, among which Leishmania infantum stands out as a being frequently pathogenic to humans and dogs in Mediterranean countries. In this study, Sergentomyia minuta sand flies were collected using CDC miniature light traps in different 431 biotopes from Southwest Spain. A total of 114 females were tested for the presence of Leishmania DNA by targeting ITS-1 and cyt-B sequences by PCR.
View Article and Find Full Text PDFBackground: Zoonotic visceral leishmaniasis caused by Leishmania infantum which is transmitted by phlebotomine sand flies (Diptera, Psychodidae) is endemic in the Mediterranean basin. The main objectives of this study were to (i) detect Leishmania DNA and (ii) identify blood meal sources in wild caught female sand flies in the zoonotic leishmaniasis region of Algarve, Portugal/Southwestern Europe.
Methods: Phlebotomine sand flies were collected using CDC miniature light traps and sticky papers.
Phlebotomine sand flies (Diptera, Psychodidae) are known to be vectors of several pathogens such as Leishmania and Phlebovirus genera. The identification of phlebotomine sand fly species is currently based on morphological characters, and requires considerable taxonomic expertise and skilfulness, but may be complemented by DNA-based analyses for (i) accurate species identification and (ii) for estimating sand fly diversity. The aim of this study was to evaluate the utility of mitochondrial cytochrome oxidase gene subunit I (cox1) sequence analysis as a complementary tool to classical taxonomical for the identification of the most prevalent phlebotomine sand fly species from southern Europe (i.
View Article and Find Full Text PDFPhlebotomine sandflies of the genus Sergentomyia are widely distributed throughout the Old World. It has been suggested that Sergentomyia spp are involved in the transmission of Leishmania in India and Africa, whereas Phlebotomus spp are thought to be the sole vectors of Leishmania in the Old World. In this study, Leishmania major DNA was detected in one Sergentomyia minuta specimen that was collected in the southern region of Portugal.
View Article and Find Full Text PDFThe Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta.
View Article and Find Full Text PDFThe domestic dog is the reservoir host of Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis endemic in Mediterranean Europe. Targeted control requires predictive risk maps of canine leishmaniasis (CanL), which are now explored. We databased 2187 published and unpublished surveys of CanL in southern Europe.
View Article and Find Full Text PDFBackground: Tsetse flies (Glossina spp.) are responsible for the transmission of trypanosomes, agents of animal and Human African Trypanosomiasis (HAT). These diseases are associated with considerable animal and human economical loss, morbidity and mortality.
View Article and Find Full Text PDFBackground: Determining if a tsetse fly is infected by trypanosomes and thus potentially able to transmit trypanosome-related human and animal diseases is an extremely laborious and time-consuming task to perform, especially under field conditions. In this study we tested a possible alternative approach that uses the entire insect vector for DNA extraction and PCR analysis to detect and identify Trypanosoma spp. in field collected tsetse flies.
View Article and Find Full Text PDF