Right ventricular (RV) damage contributes to poor clinical outcome after pulmonary embolism (PE). Our studies show that neutrophils contribute to RV dysfunction in rat PE. Present studies examine effects of the nonsteroidal anti-inflammatory drug, ketorolac, upon RV inflammation and dysfunction.
View Article and Find Full Text PDFModerate to severe pulmonary embolism (PE) can cause pulmonary arterial hypertension and right ventricular (RV) heart damage. Previous studies from our laboratory indicate that the basal outflow tract of the RV is injured and has acute inflammation followed by tissue remodeling while the apex appears normal. The present studies examine transcription responses to chronic PE in RV apex and outflow tracts using DNA microarrays to identify transcription responses by region.
View Article and Find Full Text PDFRight ventricular (RV) dysfunction is associated with poor clinical outcome following pulmonary embolism (PE). Previous studies in our laboratory show that influx of neutrophils contributes to acute RV damage seen in an 18 h rat model of PE. The present study describes the further progression of inflammation over 6 weeks and compares the neutrophil and monocyte responses.
View Article and Find Full Text PDFBackground: The emergence of drug resistant viruses, together with the possibility of increased virulence, is an important concern in the development of new antiviral compounds. Cidofovir (CDV) is a phosphonate nucleotide that is approved for use against cytomegalovirus retinitis and for the emergency treatment of smallpox or complications following vaccination. One mode of action for CDV has been demonstrated to be the inhibition of the viral DNA polymerase.
View Article and Find Full Text PDFRight ventricular (RV) dysfunction is a strong risk factor for poor clinical outcome following pulmonary embolism (PE), the third most prevalent cardiovascular disease. Previous studies in our laboratory demonstrated that RV failure during PE is mediated, in part, by neutrophil-dependant cardiac inflammation. In this study we use DNA microarray analysis of gene expression to demonstrate that PE results in increased expression of the CXC chemokines CINC-1 and CINC-2 between 6 and 18 h after the start of PE in a rat model of PE.
View Article and Find Full Text PDF