PDE8B, PRKAR1A and the Wnt/β-catenin signaling are involved in endocrine disorders. However, how PDEB8B interacts with both Wnt and protein kinase A (PKA) signaling in vivo remains unknown. We created a novel Pde8b knockout mouse line (Pde8b); Pde8b haploinsufficient (Pde8b) mice were then crossed with mice harboring: (1) constitutive beta-catenin activation (Pde8b;ΔCat) and (2) Prkar1a haploinsufficieny (Pde8b;Prkar1a).
View Article and Find Full Text PDFFracturing microscale constrictions in metallic wires, such as tungsten, platinum, or platinum-iridium, is a common fabrication method used to produce atomically sharp tips for scanning tunneling microscopy (STM), field-emission microscopy and field ion microscopy. Typically, a commercial polycrystalline drawn wire is locally thinned and then fractured by means of a dislocation slip inside the constriction. We examine a special case where a dislocation-free microscale constriction is created and fractured in a single crystal tungsten rod with a long side parallel to the [100] direction.
View Article and Find Full Text PDFThe cAMP-dependent protein kinase (PKA) is an essential regulator of lipid and glucose metabolism that plays a critical role in energy homeostasis. The impact of diet on PKA signaling has not been defined, although perturbations in individual PKA subunits are associated with changes in adiposity, physical activity and energy intake in mice and humans. We hypothesized that a high fat diet (HFD) would elicit peripheral and central alterations in the PKA system that would differ depending on length of exposure to HFD; these differences could protect against or promote diet-induced obesity (DIO).
View Article and Find Full Text PDFOsteochondromyxomas (OMX) in the context of Carney complex (CNC) and fibrous dysplasia (FD)-like lesions (FDLL) in mice, as well as isolated myxomas in humans may be caused by inactivation of PRKAR1A, the gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). OMXs and FDLL in mice lacking Prkar1a grow from abnormal proliferation of adult bone stromal cells (aBSCs). Prkar1a and Prkaca (coding for Cα) haploinsufficiency leads to COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of aBSCs.
View Article and Find Full Text PDFContext: Androgen excess may be adrenal and/or ovarian in origin; we hypothesized that a subgroup of patients with polycystic ovarian syndrome (PCOS) may have some degree of abnormal adrenocortical function.
Objective: The objective of the study was to evaluate the pituitary adrenal axis with an oral low- and high-dose dexamethasone-suppression test (Liddle's test) in women with PCOS.
Design: This was a case-control study.
Cyclic adenosine mono-phosphate-dependent protein kinase (PKA) is critically involved in the regulation of behavioral responses. Previous studies showed that PKA's main regulatory subunit, R1α, is involved in anxiety-like behaviors. The purpose of this study was to determine how the catalytic subunit, Cα, might affect R1α's function and determine its effects on anxiety-related behaviors.
View Article and Find Full Text PDFCarney Complex (CNC), a human genetic syndrome predisposing to multiple neoplasias, is associated with bone lesions such as osteochondromyxomas (OMX). The most frequent cause for CNC is PRKAR1A deficiency; PRKAR1A codes for type-I regulatory subunit of protein kinase A (PKA). Prkar1a(+/-) mice developed OMX, fibrous dysplasia-like lesions (FDL) and other tumors.
View Article and Find Full Text PDFIGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males.
View Article and Find Full Text PDFThe cAMP-dependent protein kinase A (PKA) signaling system is widely expressed and has a central role in regulating cellular metabolism in all organ systems affected by obesity. PKA has four regulatory (RIα, RIIα, RIβ, RIIβ) and four catalytic (Cα, Cβ, Cγ, Prkx) subunit isoforms that have tissue-specific expression profiles. In mice, knockout (KO) of RIIβ, the primary PKA regulatory subunit in adipose tissue or knockout of the catalytic subunit Cβ resulted in a lean phenotype that resists diet-induced obesity and associated metabolic complications.
View Article and Find Full Text PDFContext: Somatostatin (SST) receptors (SSTRs) are expressed in a number of tissues, including the adrenal cortex, but their role in cortisol secretion has not been well characterized.
Objectives: The objective of the study was to investigate the expression of SSTRs in the adrenal cortex and cultured adrenocortical cells from primary pigmented nodular adrenocortical disease (PPNAD) tissues and to test the effect of a single injection of 100 μg of the SST analog octreotide on cortisol secretion in patients with PPNAD.
Setting And Design: The study was conducted at an academic research laboratory and clinical research center.
Context: The cAMP signaling pathway is implicated in bilateral adrenocortical hyperplasias. Bilateral adrenocortical hyperplasia is often associated with ACTH-independent Cushing syndrome (CS) and may be caused by mutations in genes such as PRKAR1A, which is responsible for primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A regulates cAMP-dependent protein kinase (PKA), an essential enzyme in the regulation of adiposity.
View Article and Find Full Text PDFBackground: Familial testicular germ cell tumors (FTGCTs) are hypothesized to result from the combined interaction of multiple low-penetrance genes. We reported inactivating germline mutations of the cAMP-binding phosphodiesterase 11A (PDE11A) as modifiers of FTGCT risk. Recent genome-wide association studies have identified single-nucleotide polymorphisms in the KITLG gene, the ligand for the cKIT tyrosine kinase receptor, as strong modifiers of susceptibility to both familial and sporadic testicular germ cell tumors.
View Article and Find Full Text PDFWe have developed new applications of the pseudocolor plot for the analysis of LC/MS data. These applications include spectral averaging, analysis of variance, differential comparison of spectra, and qualitative filtering by compound class. These applications have been motivated by the need to better understand LC/MS data generated from analysis of human biofluids.
View Article and Find Full Text PDFBackground: Genetic aberrations in various components of cAMP signalling pathway predispose to endocrine tumours. Mutations in the phosphodiesterases (PDEs) are involved in the predisposition to adrenocortical neoplastic conditions.
Objective: To screen for genetic variations in PDE8B among patients with different types of adrenocortical tumours.
J Clin Endocrinol Metab
April 2012
Context: The overwhelming majority of benign lesions of the adrenal cortex leading to Cushing syndrome are linked to one or another abnormality of the cAMP or protein kinase pathway. PRKAR1A-inactivating mutations are responsible for primary pigmented nodular adrenocortical disease, whereas somatic GNAS activating mutations cause macronodular disease in the context of McCune-Albright syndrome, ACTH-independent macronodular hyperplasia, and, rarely, cortisol-producing adenomas.
Objective And Design: The whole-genome expression profile (WGEP) of normal (pooled) adrenals, PRKAR1A- (3) and GNAS-mutant (3) was studied.
Background: Carney complex (CNC) is a multiple endocrine neoplasia syndrome due to inactivating mutations in the PRKAR1A gene that codes for type Iα regulatory (RIα) subunit of protein kinase A. Most PRKAR1A mutations are subject to nonsense mRNA decay (NMD) and, thus, lead to haploinsufficiency.
Methods And Setting: Patient phenotyping for CNC features and DNA, RNA, protein, and transfection studies were carried out at a research center.
Background: Mutations in the subunits B, C, and D of succinate dehydrogenase (SDH) mitochondrial complex II have been associated with the development of paragangliomas (PGL), gastrointestinal stromal tumors, papillary thyroid and renal carcinoma (SDHB), and testicular seminoma (SDHD).
Aim: Our aim was to examine the possible causative link between SDHD inactivation and somatotropinoma.
Patients And Methods: A 37-yr-old male presented with acromegaly and hypertension.
Context: Most tumors in Carney complex (CNC) are benign, including primary pigmented nodular adrenocortical disease (PPNAD), the main endocrine tumor in CNC. Adrenocortical cancer (AC) has never been observed in the syndrome. Herein, we describe a large Azorean family with CNC caused by a point mutation in the PRKAR1A gene coding for type 1-α (RIα) regulatory subunit of the cAMP-dependent protein kinase A, in which the index patient presented with AC.
View Article and Find Full Text PDFThe role of cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling in the molecular pathways involved in fear and memory is well established. Prior studies in our lab reported that transgenic mice with an inactivating mutation in Prkar1a gene (codes for the 1-alpha regulatory subunit (R1α) of PKA) exhibited behavioral abnormalities including anxiety and depression. In the present study, we examined the role of altered PKA signaling on anxiety-like behaviors in Prkar1a(+/-) mice compared to wild-type (WT) littermates.
View Article and Find Full Text PDFSeveral receptors linked to the adenylyl cyclase signaling pathway stimulate electrical activity and calcium influx in endocrine pituitary cells, and a role for an unidentified sodium-conducting channel in this process has been proposed. Here we show that forskolin dose-dependently increases cAMP production and facilitates calcium influx in about 30% of rat and mouse pituitary cells at its maximal concentration. The stimulatory effect of forskolin on calcium influx was lost in cells with inhibited PKA (cAMP-dependent protein kinase) and in cells that were haploinsufficient for the main PKA regulatory subunit but was preserved in cells that were also haploinsufficient for the main PKA catalytic subunit.
View Article and Find Full Text PDFContext: Massive macronodular adrenocortical disease or ACTH-independent macronodular adrenal hyperplasia (AIMAH) is a clinically and genetically heterogeneous disorder.
Objective And Design: Whole-genome expression profiling and oligonucleotide array comparative genomic hybridization changes were analyzed in samples of different nodules from the same patients with AIMAH. Quantitative RT-PCR and staining were employed to validate the mRNA array data.
Background: Carney complex (CNC) is an autosomal dominant multiple neoplasia, caused mostly by inactivating mutations of the regulatory subunit 1A of the protein kinase A (PRKAR1A). Primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine manifestation of CNC with a great inter-individual variability. Germline, protein-truncating mutations of phosphodiesterase type 11A (PDE11A) have been described to predispose to a variety of endocrine tumors, including adrenal and testicular tumors.
View Article and Find Full Text PDFPatients with genetic defects of the cyclic (c) adenosine-monophosphate (AMP)-signaling pathway and those with neonatal-onset multisystem inflammatory disease (NOMID) develop tumor-like lesions of the long bones. The molecular basis of this similarity is unknown. NOMID is caused by inappropriate caspase-1 activity, which in turn activates the inflammasome.
View Article and Find Full Text PDFContext: Among the genomic loci harboring potential candidate genes for prostatic cancer (PCa) is the 2q31-33 chromosomal region that harbors the gene encoding phosphodiesterase 11A (PDE11A). In addition, the combined cancer genome expression metaanalysis datasets included PDE11A among the top 1% down-regulated genes in PCa.
Objective: In the present study, we screened 50 unrelated PCa patients of Brazilian descent for PDE11A coding defects.
A population of stromal cells that retains osteogenic capacity in adult bone (adult bone stromal cells or aBSCs) exists and is under intense investigation. Mice heterozygous for a null allele of prkar1a (Prkar1a(+/-)), the primary receptor for cyclic adenosine monophosphate (cAMP) and regulator of protein kinase A (PKA) activity, developed bone lesions that were derived from cAMP-responsive osteogenic cells and resembled fibrous dysplasia (FD). Prkar1a(+/-) mice were crossed with mice that were heterozygous for catalytic subunit Calpha (Prkaca(+/-)), the main PKA activity-mediating molecule, to generate a mouse model with double heterozygosity for prkar1a and prkaca (Prkar1a(+/-)Prkaca(+/-)).
View Article and Find Full Text PDF