Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts.
View Article and Find Full Text PDFD/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is a devastating pediatric sarcoma. The survival outcomes remain poor for patients with relapsed or metastatic disease. Effective targeted therapy is lacking due to our limited knowledge of the underlying cellular and molecular mechanisms leading to disease progression.
View Article and Find Full Text PDFNewly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated - or -null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing acetyls on H4 Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4.
View Article and Find Full Text PDFBackground: Etl4(lacZ) (Enhancer trap locus 4) and Skt(Gt) (Sickle tail) are lacZ reporter gene integrations into the same locus on mouse chromosome 2 targeting a gene that is expressed in the notochord of early embryos and in multiple epithelia during later development. Both insertions caused recessive mutations that resulted exclusively in mild defects in the caudal vertebral column. Since notochord-derived signals are essential for formation of the vertebral column the phenotypes suggested that the lacZ insertions interfered with some notochord-dependent aspect of vertebral development.
View Article and Find Full Text PDFBackground: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1.
View Article and Find Full Text PDFInteractions between sleep and immune function are bidirectional. Although the mechanisms that govern these interactions are not fully elucidated, the pro-inflammatory cytokine, interleukin-1β (IL-1), is a known regulator of sleep and mediator of immune responses. To further clarify the underlying substrates of sleep and immune interactions, we engineered two transgenic mouse lines that express interleukin-1 receptor 1 (IL1R1) only in the central nervous system (CNS) and selectively on neurons (NSE-IL1R1) or astrocytes (GFAP-IL1R1).
View Article and Find Full Text PDFInducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline.
View Article and Find Full Text PDFGPR54 is a G-protein-coupled receptor, which binds kisspeptins and is widely expressed throughout the brain. Kisspeptin-GPR54 signaling has been implicated in the regulation of pubertal and adulthood gonadotropin-releasing hormone (GnRH) secretion, and mutations or deletions of GPR54 cause hypogonadotropic hypogonadism in humans and mice. Other reproductive roles for kisspeptin-GPR54 signaling, including the regulation of developmental GnRH secretion or sexual behavior in adults, have not yet been explored.
View Article and Find Full Text PDFTRH is a neuropeptide with a variety of hormonal and neurotransmitter/neuromodulator functions. In particular, TRH has pronounced acute antidepressant effects in both humans and animals and has been implicated in the mediation of the effects of other antidepressive therapies. Two G protein-coupled receptors, TRH receptor 1 (TRH-R1) and TRH-R2, have been identified.
View Article and Find Full Text PDFNeuromedin U (NMU) is a highly conserved neuropeptide with a variety of physiological functions mediated by two receptors, peripheral NMUR1 and central nervous system NMUR2. Here we report the generation and phenotypic characterization of mice deficient in the central nervous system receptor NMUR2. We show that behavioral effects, such as suppression of food intake, enhanced pain response, and excessive grooming induced by intracerebroventricular NMU administration were abolished in the NMUR2 knockout (KO) mice, establishing a causal role for NMUR2 in mediating NMU's central effects on these behaviors.
View Article and Find Full Text PDFThe floating head (flh) gene in zebrafish encodes a homeodomain protein, which is essential for notochord formation along the entire body axis. flh orthologs, termed Not genes, have been isolated from chick and Xenopus, but no mammalian ortholog has yet been identified. Truncate (tc) is an autosomal recessive mutation in mouse that specifically disrupts the development of the caudal notochord.
View Article and Find Full Text PDF