When a context change is detected during motor learning, motor memories-internal models for executing movements within some context-may be created or existing motor memories may be activated and modified. Assigning credit to plausible causes of errors can allow for fast retrieval and activation of a motor memory, or a combination of motor memories, when the presence of such causes is detected. Features of the movement-context intrinsic to the movement dynamics, such as posture of the end effector, are often effective cues for detecting context change whereas features extrinsic to the movement dynamics, such as the colour of an object being moved, are often not.
View Article and Find Full Text PDFThe ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn't proceed unless each mapping is trained in association with a predictive cue.
View Article and Find Full Text PDFIs the neural control of movements towards moving targets independent to that of static targets? In the following experiments, we used a visuomotor rotation adaptation paradigm to examine the extent to which adapting arm movements to static targets generalize to that of moving targets (i.e. pursuit or tracking).
View Article and Find Full Text PDFWhen reaching towards objects, the human central nervous system (CNS) can actively compensate for two different perturbations simultaneously (dual adaptation), though this does not simply occur upon presentation. Dual adaptation is made more difficult when the desired trajectories and targets are identical and hence do not cue the impending perturbation. In cases like these, the CNS requires contextual cues in order to predict the dynamics of the environment.
View Article and Find Full Text PDF