A ring of sub-wavelength spaced dipole-coupled quantum emitters features extraordinary optical properties when compared to a one-dimensional chain or a random collection of emitters. One finds the emergence of extremely subradiant collective eigenmodes similar to an optical resonator, which features strong 3D sub-wavelength field confinement near the ring. Motivated by structures commonly appearing in natural light-harvesting complexes (LHCs), we extend these studies to stacked multi-ring geometries.
View Article and Find Full Text PDFNanoscopic arrays of quantum emitters can feature highly sub-radiant collective excitations with a lifetime exponentially growing with emitter number. Adding an absorptive impurity as an energy dump in the center of a ring shaped polygon allows to exploit this feature to create highly efficient single photon antennas. Here among regular polygons with an identical center absorbing emitter, a nonagon exhibits a distinct optimum of the absorption efficiency.
View Article and Find Full Text PDFThe interplay of thermodynamics and quantum correlations can give rise to counterintuitive phenomena in many-body systems. We report on an isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms, we observe that the gas expands instead of contracting.
View Article and Find Full Text PDF