Publications by authors named "Maria Monsalve"

Article Synopsis
  • Prolonged use of atypical antipsychotics (AAPs) like olanzapine (OLA) and aripiprazole (ARI) is linked to increased cardiovascular disease risk, with effects on mitochondrial function now being studied.
  • In experiments with Fao hepatoma cells, ARI showed resistance to oxidative stress but led to higher apoptosis rates, while OLA worsened cell survival when exposed to stress.
  • The study reveals that ARI dampens stress signaling and mitochondrial function, while OLA enhances them, helping to clarify the metabolic risks tied to long-term AAP usage.
View Article and Find Full Text PDF
Article Synopsis
  • - The choice of energy substrate, like glucose or galactose, significantly affects the metabolic pathways of cells in culture, particularly in endothelial cells which have low mitochondrial oxidation.
  • - Endothelial cells grown in galactose medium exhibit higher mitochondrial oxidative capacity, a more interconnected mitochondrial network, and increased cell-to-cell communication compared to those grown in glucose medium.
  • - Galactose culture conditions lead to elevated levels of the redox regulator FOXO3 and reduced levels of Nrf2 in bovine aortic endothelial cells, suggesting that galactose media is better for studying mitochondrial-related processes and redox signaling.
View Article and Find Full Text PDF

This study evaluated the intestinal effects of alkalinized filtered water in lean and obese adult Zucker rats. For 3 months, 12-week-old rats consumed either tap water or filtered alkalinized tap water from Madrid city. Weight gain was monitored, changes in metabolism were evaluated by indirect calorimetry, and total antioxidant capacity and levels of inflammatory mediators were measured in plasma.

View Article and Find Full Text PDF

A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents.

View Article and Find Full Text PDF

Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer.

View Article and Find Full Text PDF

The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. Furthermore, the incidence of metabolic syndrome-related pathologies keeps increasing, hence the importance of seeking novel natural sources for reducing the impact of certain risk factors.

View Article and Find Full Text PDF

Antipsychotics used to treat schizophrenia can cause drug-induced liver injury (DILI), according to the Roussel Uclaf Causality Assessment Method. The role of oxidative stress in triggering injury in these DILI cases is unknown. We repeatedly administrated two second-generation antipsychotics, aripiprazole and olanzapine, at laboratory alert levels to study underlying mechanisms in stress prevention upon acute oxidative stress.

View Article and Find Full Text PDF

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality.

View Article and Find Full Text PDF

Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity.

View Article and Find Full Text PDF

Membrane cytochrome reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase.

View Article and Find Full Text PDF

Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer is a highly prevalent disease, with survival rates influenced by factors like tissue type, location, and stage at diagnosis.
  • Researchers are exploring various compounds and strategies to target cancer, including those that affect DNA damage checkpoints and specific signaling pathways.
  • Recent findings link increased lipid peroxidation driven by 15-lipoxygenases to successful cancer treatments, suggesting that manipulating lipid hydroperoxide levels could be a promising therapeutic approach.
View Article and Find Full Text PDF

Acute pancreatitis is an inflammatory process of the pancreatic tissue that often leads to distant organ dysfunction. Although liver injury is uncommon in acute pancreatitis, obesity is a risk factor for the development of hepatic complications. The aim of this work was to evaluate the role of PGC-1α in inflammatory response regulation in the liver and its contribution to the detrimental effect of obesity on the liver during acute pancreatitis.

View Article and Find Full Text PDF

Most pharmacological studies concerning the beneficial effects of organoselenium compounds have focused on their ability to mimic glutathione peroxidase (GPx). However, mechanisms other than GPx-like activity might be involved on their biological effects. This study was aimed to investigate and compare the protective effects of two well known [(PhSe) and PhSeZnCl] and two newly developed (MRK Picolyl and MRK Ester) organoselenium compounds against oxidative challenge in cultured neuronal HT22 cells.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents.

View Article and Find Full Text PDF

PGC-1α controls, to a large extent, the capacity of cells to respond to changing nutritional requirements and energetic demands. The key role of metabolic reprogramming in tumor development has highlighted the potential role of PGC-1α in cancer. To investigate how loss of PGC-1α activity in primary cells impacts the oncogenic characteristics of spontaneously immortalized cells, and the mechanisms involved, we used the classic 3T3 protocol to generate spontaneously immortalized mouse embryonic fibroblasts (iMEFs) from wild-type (WT) and PGC-1α knockout (KO) mice and analyzed their oncogenic potential in vivo and in vitro.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO).

View Article and Find Full Text PDF

Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR).

View Article and Find Full Text PDF

Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C ()/] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E ()deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on mRNA expression. Dietary cholesterol increased hepatic expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding.

View Article and Find Full Text PDF

Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma.

View Article and Find Full Text PDF

Aims: Oxidative stress is known to induce early replicative senescence. Senescence has been proposed to work as a barrier to immortalization and tumor development. Here, we aimed to evaluate the impact of the loss of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), a master regulator of oxidative metabolism and mitochondrial reactive oxygen species (ROS) generation, on replicative senescence and immortalization in mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α, PPARGC1A) regulates the expression of genes involved in energy homeostasis and mitochondrial biogenesis. Here we identify inactivation of the transcriptional regulator PGC-1α as a landmark for experimental nephrotoxic acute kidney injury (AKI) and describe the in vivo consequences of PGC-1α deficiency over inflammation and cell death in kidney injury. Kidney transcriptomic analyses of WT mice with folic acid-induced AKI revealed 1398 up- and 1627 downregulated genes.

View Article and Find Full Text PDF

The interplay of mitochondria with the endoplasmic reticulum and their connections, called mitochondria-ER contacts (MERCs) or mitochondria-associated ER membranes (MAMs), are crucial hubs in cellular stress. These sites are essential for the passage of calcium ions, reactive oxygen species delivery, the sorting of lipids in whole-body metabolism. In this perspective article, we focus on microscopic evidences of the pivotal role of MERCs/MAMs and their changes in metabolic diseases, like obesity, diabetes, and neurodegeneration.

View Article and Find Full Text PDF

All four FOXO isoforms have been shown to respond to changes in the cellular redox status of the cell, and regulate the expression of target genes that in turn can modulate the cellular oxidative status. However, the mechanisms involved are still controversial. It is clear though that redox regulation of FOXO factors occurs at different levels.

View Article and Find Full Text PDF

Obesity is associated with local and systemic complications in acute pancreatitis. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator and master regulator of mitochondrial biogenesis that exhibits dysregulation in obese subjects. Our aims were: (1) to study PGC-1α levels in pancreas from lean or obese rats and mice with acute pancreatitis; and (2) to determine the role of PGC-1α in the inflammatory response during acute pancreatitis elucidating the signaling pathways regulated by PGC-1α.

View Article and Find Full Text PDF