In this work, we analyzed the suitability of a versatile recombinant lipase, secreted by (OPEr) and produced in , as a catalyst of the synthesis of biodiesel. The enzyme was immobilized by five covalent procedures and by hydrophobicity on functionalized nanoparticles of magnetite or of a novel Zn/Mn oxide named G1. Then, they were tested for green production of biodiesel by solventless enzymatic transesterification of discarded cooking oil and methanol (1:4) at 25 °C.
View Article and Find Full Text PDFThe recombinant lipase of (OPEr) is characterized by its prominent sterol esterase activity. The protein was immobilized on magnetic nanoparticles, giving four enzyme variants that have been tested in solvent-free transesterification of methyl oleate and sitostanol. The yields of stanol esters reached 85%, and the catalysts can be reused.
View Article and Find Full Text PDFA recombinant β-xylosidase (rBxTW1) from the ascomycete Talaromyces amestolkiae and a mutant derived from it, with mostly synthetic activity, have been immobilized as magnetic cross-linked enzyme aggregates (mCLEAs). The mCLEAs of rBxTW1 kept the excellent hydrolytic and O-transxylosylating activities of the free enzyme and had improved thermal and pH stability. The mCLEAs of the mutant also maintained or improved the catalytic properties of the soluble enzyme, synthetizing the O-xylosides of vanillin and (-)-epigallocatechin gallate, and the N- and S-xyloside of 3,5-dibromo-1,2,4-triazole and thiophenol, respectively.
View Article and Find Full Text PDFThe recombinant lipase from OPEr has demonstrated to have catalytic properties superior to those of many commercial enzymes. Enzymatic crudes with OPEr were immobilized onto magnetite nanoparticles by hydrophobicity (SiMAG-Octyl) and by two procedures that involve covalent attachment of the protein (mCLEAs and AMNP-GA), giving three nanobiocatalysts with different specific activity in hydrolysis of -nitrophenyl butyrate (NPB) and good storage stability at 4 °C over a period of 4 months. Free OPEr and the different nanobiocatalysts were compared for the synthesis of butyl esters of volatile fatty acids C4 to C7 in reactions containing the same lipase activity.
View Article and Find Full Text PDFThe esters of β-sitostanol and fatty acids are known for their effect as cholesterol-lowering agents. In this work, the efficiency of three lipases as biocatalysts of the esterification of β-sitostanol and C16 and C18 fatty acids was compared. The sterol esterase of Ophiostoma piceae (OPEr) yielded the highest esterification rates and was selected for further optimization of the reaction.
View Article and Find Full Text PDFβ-sitostanol esters, used as dietary complement for decreasing cholesterol absorption, have been synthesized at 28°C via direct esterification or transesterification catalyzed by the versatile lipase/sterol esterase from the ascomycete fungus O. piceae. Direct esterification was conducted in biphasic isooctane: water systems containing 10mM β-sitostanol and lauric or oleic acid as acyl donors, reaching 90% esterification in 3h with the recombinant enzyme.
View Article and Find Full Text PDF