In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy.
View Article and Find Full Text PDFThymic epithelial cells (TECs) are essential in supporting the development of mature T cells from hematopoietic progenitor cells and facilitate their lineage-commitment, proliferation, T-cell receptor repertoire selection and maturation. While animal model systems have greatly aided in elucidating the contribution of stromal cells to these intricate processes, human tissue has been more difficult to study, partly due to a lack of suitable surface markers comprehensively defining human TECs. Here, we conducted a flow cytometry based surface marker screen to reliably identify and quantify human TECs and delineate medullary from cortical subsets.
View Article and Find Full Text PDFBackground: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.
View Article and Find Full Text PDFChiral phase-transfer catalysis provides high level of enantiocontrol, however no experimental data showed the interaction of catalysts and substrates. H NMR titration was carried out on Cinchona and Maruoka ammonium bromides vs. nitro, carbonyl, heterocycles, and N-F containing compounds.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) produced by soil bacterium Clostridium botulinum are cause of botulism and listed as biohazard agents, thus rapid screening assays are needed for taking the correct countermeasures in a timely fashion. The gold standard method relies on the mouse lethality assay with a lengthy analysis time, i.e.
View Article and Find Full Text PDFIn the present work, structural features of the interaction between peptide nucleic acid (PNA)-based analogs of the tumor-suppressor microRNA-34a with both its binding sites on MYCN mRNA were investigated. In particular, the region from base 1 to 8 ("seed" region) of miR-34a was reproduced in the form of an 8-mer PNA fragment (tiny PNA), and binding to target 3'UTR MYCN mRNA, was studied by a seldom reported and detailed NMR characterization, providing evidence for the formation of anti-parallel duplexes with a well-organized structural core. The formation of PNA-3'UTR duplexes was also confirmed by Circular Dichroism, and their melting curves were measured by UV spectroscopy.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma is the predominant neoplastic disease of the pancreas and it represents the fourth most frequent cause of death in cancer-related disease, with only 8% of survivors after 5-year to the diagnosis. The main issues of this type of cancer rely on fast progress (i.e.
View Article and Find Full Text PDFBiomimetic design represents an emerging field for improving knowledge of natural molecules, as well as to project novel artificial tools with specific functions for biosensing. Effective strategies have been exploited to design artificial bioreceptors, taking inspiration from complex supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of chemical species at the molecular scale.
View Article and Find Full Text PDFHerein we report the first organocatalysed enantioselective synthesis of gingesulfonic acids and shogasulfonic acids via a mild and convenient aminothiourea-catalysed conjugate addition of bisulfite to the olefin moiety of α,β-unsaturated carbonyls-a technology previously reported by us. A series of optically active naturally occurring sulfonic acids are prepared in their natural and unnatural configurations, and their absolute configurations are unequivocally confirmed by single crystal X-ray diffractometry.
View Article and Find Full Text PDFMicroRNAs are a ubiquitous class of non-coding RNAs able to regulate gene expression in diverse biological processes. Widespread miRNAs deregulation was reported in numerous diseases including cancer, with several miRNAs playing oncogenic and/or tumor suppressive role by targeting multiple mRNAs simultaneously. Based on these findings, miRNAs have emerged as promising therapeutic tools for cancer treatment.
View Article and Find Full Text PDFPeriodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC.
View Article and Find Full Text PDFCyclopropane esters holding two quaternary centres were prepared in high yields, complete diastereoselection and up to 83% ee. The reaction described herein entailed reacting (Z)-3-substituted-2-(4-pyridyl)-acrylonitrile, a reactive class of Michael acceptor, with 2-bromomalonate esters in the presence of Cinchona derived phase-transfer catalysts. The reaction allowed multi-gram preparation of the desired products.
View Article and Find Full Text PDFPNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed.
View Article and Find Full Text PDF(Z)-3-Substituted-2-(4-pyridyl)-acrylonitriles, a reactive class of Michael acceptors obtained exclusively as a single (Z) isomer, reacted with un-substituted isocyanoacetate esters mediated by phase-transfer catalysis to give, after base promoted cyclisation, functionalized imines in up to 94% ee and as a single diastereoisomer.
View Article and Find Full Text PDFThe reaction between 3-methyl-4-nitro-5-styrylisoxazoles and ethyl isocyanoacetate proceeded under phase transfer catalysis to give enantioenriched monoadducts in high enantiomeric excess (up to 99% ee). The resulting adducts were subsequently cyclised to give 2,3-dihydropyrroles and substituted pyrrolidines in identical high ees and as a single diastereoisomer.
View Article and Find Full Text PDFOncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen led to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a type II tyrosine kinase inhibitor that is able to bind the "DFG-out" conformation of the kinase.
View Article and Find Full Text PDFHerein, we describe a short synthesis of 3-methyl-4-nitro-5-alkylethenyl isoxazoles and their reactivity as Michael acceptors. The title compounds reacted with nitromethane under phase-transfer catalysis to provide highly enantioenriched adducts (up to 93% ee) which were then converted to the corresponding γ-nitroacids.
View Article and Find Full Text PDFHeavily substituted cyclopropane esters were prepared in high yields, complete diastereoselection and high (up to 96%) enantioselectivity. The reaction described herein entailed reacting 4-nitro-5-styrylisoxazoles, a class of cinnamate synthetic equivalent, with 2-bromomalonate esters under the catalysis of 5 mol% of a Cincona derived phase-transfer catalyst. The reaction allowed multi-gram preparation of desired products.
View Article and Find Full Text PDFIn this work we report the design and synthesis of kinked oligonucleotide duplexes as potential inhibitors of HMGB1, a cytokine which triggers a broad range of immunological effects. We found that the designed ligands can interact with HMGB1, as evidenced by circular dichroism spectroscopy, and are able to block some extracellular effects induced by the protein, such as cellular proliferation and migration, as we demonstrated by in vitro biological assays. After selecting the most stable and active kinked duplex, we synthesized the corresponding PNA/DNA chimeric duplex which resulted to be more resistant to enzymatic degradation, and showed a biological activity comparable to that of the natural duplex.
View Article and Find Full Text PDFA novel nucleic acid compaction device based on a positively-charged alpha,epsilon-poly-l-lysine was realized for the first time. The polycationic peptide was obtained by assembling Fmoc and Boc orthogonally protected l-lysine monomers by solid phase synthesis. The route to the novel polycation is very fast and convenient because it allows for the obtainment of the desired product in few synthetic steps exclusively employing Fmoc chemistry.
View Article and Find Full Text PDFMol Ecol Resour
March 2010
This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes.
View Article and Find Full Text PDFIn this work, we report thermodynamic, kinetic, and microrheological studies relative to the formation of PNA- and PNA/DNA-based noncovalent polymeric systems, useful tools for biotechnological and bioengineering applications. We realized two kinds of systems: a PNA-based system formed by a self-assembling PNA tridendron, and a PNA/DNA hybrid system formed by a PNA tridendron and a DNA linker. The formation of a three-dimensional polymeric network, by means of specific Watson-Crick base pairing, was investigated by a detailed UV and CD spectroscopic study.
View Article and Find Full Text PDFBackground: Expressed sequence tag (EST) databases represent a valuable resource for the identification of genes in organisms with uncharacterized genomes and for development of molecular markers. One class of markers derived from EST sequences are simple sequence repeat (SSR) markers, also known as EST-SSRs. These are useful in plant genetic and evolutionary studies because they are located in transcribed genes and a putative function can often be inferred from homology searches.
View Article and Find Full Text PDF