To accommodate functional demands, the composition and organization of the skeleton differ among species. Microcomputed tomography has improved our ability markedly to assess structural parameters of cortical and cancellous bone. The current study describes differences in cortical and cancellous bone structure, bone mineral density, and morphology (geometry) at the proximal femur, proximal femoral diaphysis, lumbar vertebrae, and mandible in mice, rats, rabbits, dogs, and nonhuman primates.
View Article and Find Full Text PDFIn older humans, bone elongation ceases, periosteal expansion continues, and bone remodeling remains a dominant metabolic process. An appropriate animal model of type I and type II osteoporosis would be a species with sealed growth plates and persistence of bone remodeling. The rat is commonly used as a primary model, but due to delayed epiphyseal closure with continuous modeling and lack of Haversian remodeling, Food and Drug Administration guidelines recommend assessment of bone quality in an additional, non rodent, remodeling species.
View Article and Find Full Text PDFUnlabelled: The aim of this study was to examine the genetic effects on cortical bone geometry. Genotypes from 487 mice were compared with geometric traits obtained from microCT. We found 14 genetic markers that associate with geometric traits, showing the complexity of genetic control over bone geometry.
View Article and Find Full Text PDFExperimental cell or ex vivo gene therapy for localized bone formation typically uses osteoprogenitor cells propagated from periosteum or bone marrow. Both require bone or marrow biopsies to obtain cells. We have demonstrated that implantation of gingival or dermal fibroblasts transduced with BMP ex vivo, using a recombinant adenovirus (AdCMVBMP) attached to porous biodegradable scaffolds, form bone in vivo.
View Article and Find Full Text PDF