Publications by authors named "Maria Minguito de la Escalera"

Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in : chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry.

View Article and Find Full Text PDF

Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6C monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans.

View Article and Find Full Text PDF

Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered.

View Article and Find Full Text PDF

Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden.

View Article and Find Full Text PDF

Background: Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce T(H)1/T(H)17 responses, the functional specialization enabling DCs to polarize T(H)2 responses remains undefined. Because IL-4 is essential during T(H)2 responses not only by acting on CD4(+) T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during T(H)2 responses.

Objective: We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of T(H)2 responses.

View Article and Find Full Text PDF

Influenza A viruses containing the promoter mutations G3A/C8U in a given segment express increased levels of the corresponding viral protein during infection due to increased levels of mRNA or cRNA species. The replication of these recombinant viruses is attenuated, and they have an enhanced shedding of noninfectious particles and are incapable of antagonizing interferon (IFN) effectively. Our findings highlight the possibility of increasing influenza virus protein expression and the need for a delicate balance between influenza viral replication, protein expression, and assembly.

View Article and Find Full Text PDF