Publications by authors named "Maria Milina"

Article Synopsis
  • Core-shell architectures are effective for enhancing noble-metal catalysts, specifically a Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN).
  • Significant core-level shifts in the Pt shells were observed, indicating increased stabilization of Pt valence d-states due to the nitride core's influence.
  • This structural modulation enhances CO tolerance during hydrogen electrooxidation, presenting opportunities for creating new materials with adjustable catalytic properties.
View Article and Find Full Text PDF

Noble metal-coated core-shell nanoparticles have been applied to a suite of catalytic applications, with the aim of decreasing the noble metal loading while ideally improving their performance. The chemistry and therefore activity at the surface of these materials are intimately related to the accurate description of the core-shell interface. Using density functional theory, we developed a procedure to obtain realistic surface topology descriptions at the heterometallic junction.

View Article and Find Full Text PDF

We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.

View Article and Find Full Text PDF

A literature survey reveals a prominent reduction in the concentration of Brønsted acid sites in hierarchically organized zeolites with increasing mesoporous or external surface area independent of the framework type or synthesis route; this suggests a common fundamental explanation. To determine the cause, nature, and impact of the underlying changes in aluminum speciation, this study combines a multitechnique analysis that integrates basic characterization, a detailed synchrotron XRD and multiple-quantum NMR spectroscopy assessment, and catalytic tests to correlate evolution of the properties with performance during successive steps in the preparation of hierarchical MFI-type zeolites by desilication. The findings, subsequently generalized to FAU- and BEA-type materials, identify the crucial impact of calcination on the protonic form, which is an integral step in the synthesis and regeneration of zeolite catalysts; on aluminum coordination; and the associated acidity trends.

View Article and Find Full Text PDF

Without techniques sensitive to complex pore architectures, synthetic efforts to enhance molecular transport in zeolite and other porous materials through hierarchical structuring lack descriptors for their rational design. The power of positron annihilation lifetime spectroscopy (PALS) to characterize the pore connectivity in hierarchical MFI zeolites is demonstrated, establishing a direct link with the enhanced catalyst lifetime in the conversion of methanol to valuable hydrocarbons. The unique ability to capture subtleties of the hierarchical structure originates from the dynamic nature of the ortho-positronium response to the pore network.

View Article and Find Full Text PDF